RT Journal Article SR Electronic T1 Optimal Combination of Neural Temporal Envelope and Fine Structure Cues to Explain Speech Identification in Background Noise JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 12145 OP 12154 DO 10.1523/JNEUROSCI.1025-14.2014 VO 34 IS 36 A1 Moon, Il Joon A1 Won, Jong Ho A1 Park, Min-Hyun A1 Ives, D. Timothy A1 Nie, Kaibao A1 Heinz, Michael G. A1 Lorenzi, Christian A1 Rubinstein, Jay T. YR 2014 UL http://www.jneurosci.org/content/34/36/12145.abstract AB The dichotomy between acoustic temporal envelope (ENV) and fine structure (TFS) cues has stimulated numerous studies over the past decade to understand the relative role of acoustic ENV and TFS in human speech perception. Such acoustic temporal speech cues produce distinct neural discharge patterns at the level of the auditory nerve, yet little is known about the central neural mechanisms underlying the dichotomy in speech perception between neural ENV and TFS cues. We explored the question of how the peripheral auditory system encodes neural ENV and TFS cues in steady or fluctuating background noise, and how the central auditory system combines these forms of neural information for speech identification. We sought to address this question by (1) measuring sentence identification in background noise for human subjects as a function of the degree of available acoustic TFS information and (2) examining the optimal combination of neural ENV and TFS cues to explain human speech perception performance using computational models of the peripheral auditory system and central neural observers. Speech-identification performance by human subjects decreased as the acoustic TFS information was degraded in the speech signals. The model predictions best matched human performance when a greater emphasis was placed on neural ENV coding rather than neural TFS. However, neural TFS cues were necessary to account for the full effect of background-noise modulations on human speech-identification performance.