RT Journal Article SR Electronic T1 Chronic Back Pain Is Associated with Alterations in Dopamine Neurotransmission in the Ventral Striatum JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 9957 OP 9965 DO 10.1523/JNEUROSCI.4605-14.2015 VO 35 IS 27 A1 Ilkka K. Martikainen A1 Emily B. Nuechterlein A1 Marta Peciña A1 Tiffany M. Love A1 Chelsea M. Cummiford A1 Carmen R. Green A1 Christian S. Stohler A1 Jon-Kar Zubieta YR 2015 UL http://www.jneurosci.org/content/35/27/9957.abstract AB Back pain is common in the general population, but only a subgroup of back pain patients develops a disabling chronic pain state. The reasons for this are incompletely understood, but recent evidence implies that both preexisting and pain-related variations in the structure and function of the nervous system may contribute significantly to the development of chronic pain. Here, we addressed the role of striatal dopamine (DA) D2/D3 receptor (D2/D3R) function in chronic non-neuropathic back pain (CNBP) by comparing CNBP patients and healthy controls using PET and the D2/D3R-selective radioligand [11C]raclopride. D2/D3R availability was measured at baseline and during a pain challenge, yielding in vivo measures of receptor availability (binding potential, BPND) and DA release (change in BPND from baseline to activated state). At baseline, CNBP patients demonstrated reductions in D2/D3R BPND in the ventral striatum compared with controls. These reductions were associated with greater positive affect scores and pain tolerance measures. The reductions in D2/D3R BPND were also correlated with μ-opioid receptor BPND and pain-induced endogenous opioid system activation in the amygdala, further associated with measures of positive affect, the affective component of back pain and pain tolerance. During the pain challenge, lower magnitudes of DA release, and therefore D2/D3R activation, were also found in the ventral striatum in the CNBP sample compared with controls. Our results show that CNBP is associated with adaptations in ventral striatal D2/D3R function, which, together with endogenous opioid system function, contribute to the sensory and affective-motivational features of CNBP.SIGNIFICANCE STATEMENT The neural systems that underlie chronic pain remain poorly understood. Here, using PET, we provide insight into the molecular mechanisms that regulate sensory and affective dimensions of pain in chronic back pain patients. We found that patients with back pain have alterations in brain dopamine function that are associated with measures of pain sensitivity and affective state, but also with brain endogenous opioid system functional measures. These findings suggest that brain dopamine–opioid interactions are involved in the pathophysiology of chronic pain, which has potential therapeutic implications. Our results may also help to explain individual variation in susceptibility to opioid medication misuse and eventual addiction in the context of chronic pain.