RT Journal Article SR Electronic T1 α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 14009 OP 14016 DO 10.1523/JNEUROSCI.5003-14.2015 VO 35 IS 41 A1 Keisuke Fukuda A1 Irida Mance A1 Edward K. Vogel YR 2015 UL http://www.jneurosci.org/content/35/41/14009.abstract AB Traditionally, electrophysiological correlates of visual working memory (VWM) capacity have been characterized using a lateralized VWM task in which participants had to remember items presented on the cued hemifield while ignoring the distractors presented on the other hemifield. Though this approach revealed a lateralized parieto-occipital negative slow wave (i.e., the contralateral delay activity) and lateralized α power modulation as neural correlates of VWM capacity that may be mechanistically related, recent evidence suggested that these measures might be reflecting individuals' ability to ignore distractors rather than their ability to maintain VWM representations. To better characterize the neural correlates of VWM capacity, we had human participants perform a whole-field VWM task in which they remembered all the items on the display. Here, we found that both the parieto-occipital negative slow wave and the α power suppression showed the characteristics of VWM capacity in the absence of distractors, suggesting that they reflect the maintenance of VWM representations rather than filtering of distractors. Furthermore, the two signals explained unique portions of variance in individual differences of VWM capacity and showed differential temporal characteristics. This pattern of results clearly suggests that individual differences in VWM capacity are determined by dissociable neural mechanisms reflected in the ERP and the oscillatory measures of VWM capacity.SIGNIFICANCE STATEMENT Our work demonstrates that there exist event-related potential and oscillatory correlates of visual working memory (VWM) capacity even in the absence of task-irrelevant distractors. This clearly shows that the two neural correlates are directly linked to maintenance of task-relevant information rather than filtering of task-irrelevant information. Furthermore, we found that these two correlates show differential temporal characteristics. These results are inconsistent with proposals that the two neural correlates are byproducts of asymmetric α power suppression and indicate that they reflect dissociable neural mechanisms subserving VWM.