TY - JOUR T1 - FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon JF - The Journal of Neuroscience JO - J. Neurosci. SP - 5690 LP - 5698 DO - 10.1523/JNEUROSCI.2931-16.2017 VL - 37 IS - 23 AU - Sayan Nandi AU - Grigoriy Gutin AU - Christopher A. Blackwood AU - Nachiket G. Kamatkar AU - Kyung W. Lee AU - Gordon Fishell AU - Fen Wang AU - Mitchell Goldfarb AU - Jean M. Hébert Y1 - 2017/06/07 UR - http://www.jneurosci.org/content/37/23/5690.abstract N2 - FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1, we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles.SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo. Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages. ER -