PT - JOURNAL ARTICLE AU - Alex V. Benjamin AU - Kirstie Wailes-Newson AU - Anna Ma-Wyatt AU - Daniel H. Baker AU - Alex R. Wade TI - The Effect of Locomotion on Early Visual Contrast Processing in Humans AID - 10.1523/JNEUROSCI.1428-17.2017 DP - 2018 Mar 21 TA - The Journal of Neuroscience PG - 3050--3059 VI - 38 IP - 12 4099 - http://www.jneurosci.org/content/38/12/3050.short 4100 - http://www.jneurosci.org/content/38/12/3050.full SO - J. Neurosci.2018 Mar 21; 38 AB - Most of our knowledge about vision comes from experiments in which stimuli are presented to immobile human subjects or animals. In the case of human subjects, movement during psychophysical, electrophysiological, or neuroimaging experiments is considered to be a source of noise to be eliminated. Animals used in visual neuroscience experiments are typically restrained and, in many cases, anesthetized. In reality, however, vision is often used to guide the motion of awake, ambulating organisms. Recent work in mice has shown that locomotion elevates visual neuronal response amplitudes (Niell and Stryker, 2010; Erisken et al., 2014; Fu et al., 2014; Lee et al., 2014; Mineault et al., 2016) and reduces long-range gain control (Ayaz et al., 2013). Here, we used both psychophysics and steady-state electrophysiology to investigate whether similar effects of locomotion on early visual processing can be measured in humans. Our psychophysical results show that brisk walking has little effect on subjects' ability to detect briefly presented contrast changes and that co-oriented flankers are, if anything, more effective masks when subjects are walking. Our electrophysiological data were consistent with the psychophysics indicating no increase in stimulus-driven neuronal responses while walking and no reduction in surround suppression. In summary, we have found evidence that early contrast processing is altered by locomotion in humans but in a manner that differs from that reported in mice. The effects of locomotion on very low-level visual processing may differ on a species-by-species basis and may reflect important differences in the levels of arousal associated with locomotion.SIGNIFICANCE STATEMENT Mice are the current model of choice for studying low-level visual processing. Recent studies have shown that mouse visual cortex is modulated by behavioral state: primary visual cortex neurons in locomoting mice tend to be more sensitive and less influenced by long-range gain control. Here, we tested these effects in humans by measuring psychophysical detection thresholds and electroencephalography (EEG) responses while subjects walked on a treadmill. We found no evidence of increased contrast sensitivity or reduced surround suppression in walking humans. Our data show that fundamental measurements of early visual processing differ between humans and mice and this has important implications for recent work on the links among arousal, behavior, and vision in these two species.