RT Journal Article SR Electronic T1 A Brain–Heart Biomarker for Epileptogenesis JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 8473 OP 8483 DO 10.1523/JNEUROSCI.1130-18.2018 VO 38 IS 39 A1 Fatemeh Bahari A1 Paddy Ssentongo A1 Steven J. Schiff A1 Bruce J. Gluckman YR 2018 UL http://www.jneurosci.org/content/38/39/8473.abstract AB Postinjury epilepsy is an potentially preventable sequela in as many as 20% of patients with brain insults. For these cases biomarkers of epileptogenesis are critical to facilitate identification of patients at high-risk of developing epilepsy and to introduce effective anti-epileptogenic interventions. Here, we demonstrate that delayed brain–heart coincidences serve as a reliable biomarker. In a murine model of post-infection acquired epilepsy, we used long-term simultaneous measurements of the brain activity via electroencephalography and autonomic cardiac activity via electrocardiography, in male mice, to quantitatively track brain–heart interactions during epileptogenesis. We find that abnormal cortical discharges precede abnormal fluctuations in the cardiac rhythm at the resolution of single beat-to-beat intervals. The delayed brain–heart coincidence is detectable as early as the onset of chronic measurements, 2–14 weeks before the first seizure, only in animals that become epileptic, and increases during epileptogenesis. Therefore, delayed brain–heart coincidence serves as a biomarker of epileptogenesis and could be used for phenotyping, diagnostic, and therapeutic purposes.SIGNIFICANCE STATEMENT No biomarker that readily predicts and tracks epileptogenesis currently exists for the wide range of human acquired epilepsies. Here, we used long-term measurements of brain and heart activity in a mouse model of post-infection acquired epilepsy to investigate the potential of brain–heart interaction as a biomarker of epileptogenesis. We found that delayed coincidences from brain to heart can clearly separate the mice that became epileptic from those that did not weeks before development of epilepsy. Our findings allow for phenotyping and tracking of epileptogenesis in this and likely other models of acquired epilepsy. Such capability is critical for efficient adjunctive treatment development and for tracking the efficacy of such treatments.