RT Journal Article SR Electronic T1 Temperoammonic Stimulation Depotentiates Schaffer Collateral LTP via p38 MAPK Downstream of Adenosine A1 Receptors JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 1783 OP 1792 DO 10.1523/JNEUROSCI.1362-18.2018 VO 39 IS 10 A1 Yukitoshi Izumi A1 Charles F. Zorumski YR 2019 UL http://www.jneurosci.org/content/39/10/1783.abstract AB We previously found that low-frequency stimulation of direct temperoammonic (TA) inputs to hippocampal area CA1 depotentiates previously established long-term potentiation in the Schaffer collateral (SC) pathway through complex signaling involving dopamine, endocannabinoids, neuregulin-1, GABA, and adenosine, with adenosine being the most distal modulator identified to date. In the present studies, we examined mechanisms contributing to the effects of adenosine in hippocampal slices from male albino rats. We found that extracellular conversion of ATP to adenosine via an ectonucleotidase contributes significantly to TA-mediated SC depotentiation and the depotentiation resulting from block of adenosine transport. Adenosine-mediated SC depotentiation does not involve activation of c-Jun N-terminal protein kinase, serine phosphatases, or nitric oxide synthase, unlike homosynaptic SC depotentiation. Rather, adenosine-induced depotentiation is inhibited by specific antagonists of p38 MAPK, but not by a structural analog that does not inhibit p38. Additionally, using antagonists with relative selectivity for p38 subtypes, it appears that TA-induced SC depotentiation most likely involves p38 MAPK β. These findings have implications for understanding the role of adenosine and other extrahippocampal and intrahippocampal modulators in regulating SC synaptic function and the contributions of these modulators to the cognitive dysfunction associated with neuropsychiatric illnesses.SIGNIFICANCE STATEMENT Low-frequency stimulation of temperoammonic (TA) inputs to stratum lacunosum moleculare of hippocampal area CA1 heterosynaptically depotentiates long-term potentiation of Schaffer collateral (SC) synapses. TA-induced SC depotentiation involves complex signaling including dopamine, endocannabinoids, GABA, and adenosine, with adenosine serving as the most downstream messenger in the cascade identified to date. The present results indicate that TA-induced depotentiation requires intact inputs from entorhinal cortex and that adenosine ultimately drives depotentiation via activation of p38 MAPK. These studies have implications for understanding the cognitive dysfunction of psychiatric illnesses and certain abused drugs.