@article {Hadjidimitrakis5311, author = {Kostas Hadjidimitrakis and Sophia Bakola and Tristan A. Chaplin and Hsin-Hao Yu and Omar Alanazi and Jonathan M. Chan and Katrina H. Worthy and Marcello G.P. Rosa}, title = {Topographic Organization of the {\textquoteright}Third-Tier{\textquoteright} Dorsomedial Visual Cortex in the Macaque}, volume = {39}, number = {27}, pages = {5311--5325}, year = {2019}, doi = {10.1523/JNEUROSCI.0085-19.2019}, publisher = {Society for Neuroscience}, abstract = {The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined. We recorded the receptive fields of multiunit clusters in male macaques and reconstructed the locations of recording sites using histological sections and computer-generated maps. Immediately adjacent to dorsomedial V2, we observed a representation of the lower contralateral quadrant that represented the vertical meridian at its rostral border. This region formed a simple eccentricity gradient from \~{}\<5{\textdegree} in the annectant gyrus to \>60{\textdegree} in the parietooccipital medial sulcus. There was no topographic reversal where one would expect to find the border between V3d and PO/V6. Rather, near the midline, this lower quadrant map continued directly into a representation of the peripheral upper visual field without an intervening lower quadrant representation. Therefore, cortex previously assigned to the medial part of V3d and to PO/V6 forms a single map that includes parts of both quadrants. Together with previous observations that V3d and PO/V6 are densely myelinated relative to adjacent cortex and share similar input from V1, these results suggest that they are parts of a single area (for which we suggest the designation V6), which is distinct from the one forming the ventral component of the third-tier complex.SIGNIFICANCE STATEMENT The primate visual cortex has a large number of areas. Knowing the extent of each visual area and how they can be distinguished from each other is essential for the interpretation of experiments aimed at understanding visual processing. Currently, there are conflicting models of the organization of the dorsomedial visual cortex rostral to area V2 (one of the earliest stages of cortical processing of vision). By conducting large-scale electrophysiological recordings, we found that what were originally thought to be distinct areas in this region (dorsal V3 and the parietooccipital area PO/V6), together form a single map of the visual field. This will help to guide future functional studies and the interpretation of the outcomes of lesions involving the dorsal visual cortex.}, issn = {0270-6474}, URL = {https://www.jneurosci.org/content/39/27/5311}, eprint = {https://www.jneurosci.org/content/39/27/5311.full.pdf}, journal = {Journal of Neuroscience} }