PT - JOURNAL ARTICLE AU - Marta Maiolino AU - Nathanael O'Neill AU - Vincenzo Lariccia AU - Salvatore Amoroso AU - Sergiy Sylantyev AU - Plamena R. Angelova AU - Andrey Y. Abramov TI - Inorganic Polyphosphate Regulates AMPA and NMDA Receptors and Protects Against Glutamate Excitotoxicity via Activation of P2Y Receptors AID - 10.1523/JNEUROSCI.0314-19.2019 DP - 2019 Jul 31 TA - The Journal of Neuroscience PG - 6038--6048 VI - 39 IP - 31 4099 - http://www.jneurosci.org/content/39/31/6038.short 4100 - http://www.jneurosci.org/content/39/31/6038.full SO - J. Neurosci.2019 Jul 31; 39 AB - Glutamate is one of the most important neurotransmitters in the process of signal transduction in the CNS. Excessive amounts of this neurotransmitter lead to glutamate excitotoxicity, which is accountable for neuronal death in acute neurological disorders, including stroke and trauma, and in neurodegenerative diseases. Inorganic polyphosphate (PolyP) plays multiple roles in the mammalian brain, including function as a calcium-dependent gliotransmitter mediating communication between astrocytes, while its role in the regulation of neuronal activity is unknown. Here we studied the effect of PolyP on glutamate-induced calcium signal in primary rat neurons in both physiological and pathological conditions. We found that preincubation of primary neurons with PolyP reduced glutamate-induced and AMPA-induced but not the NMDA-induced calcium signal. However, in rat hippocampal acute slices, PolyP reduced ion flux through NMDA and AMPA receptors in native neurons. The effect of PolyP on glutamate and specifically on the AMPA receptors was dependent on the presence of P2Y1 but not of P2X receptor inhibitors and also could be mimicked by P2Y1 agonist 2MeSADP. Preincubation of cortical neurons with PolyP significantly reduced the initial calcium peak as well as the number of neurons with delayed calcium deregulation in response to high concentrations of glutamate and resulted in protection of neurons against glutamate-induced cell death. As a result, activation of P2Y1 receptors by PolyP reduced calcium signal acting through AMPA receptors, thus protecting neurons against glutamate excitotoxicity by reduction of the calcium overload and restoration of mitochondrial function.SIGNIFICANCE STATEMENT One of the oldest polymers in the evolution of living matter is the inorganic polyphosphate (PolyP). It is shown to play a role of gliotransmitter in the brain; however, the role of polyphosphate in neuronal signaling is not clear. Here we demonstrate that inorganic polyphosphate is able to reduce calcium signaling induced by physiological or high concentrations of glutamate. The effect of polyphosphate on glutamate-induced calcium signal in neurons is due to the effect of this polymer on the AMPA receptors. The effect of PolyP on glutamate-induced and AMPA-induced calcium signal is dependent on P2Y receptor antagonist. The ability of PolyP to restrict the glutamate-induced calcium signal lies in the basis of its protection of neurons against glutamate excitotoxicity.