RT Journal Article SR Electronic T1 Effects of Efferent Activity on Hair Bundle Mechanics JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 2390 OP 2402 DO 10.1523/JNEUROSCI.1312-19.2020 VO 40 IS 12 A1 Chia-Hsi Jessica Lin A1 Dolores Bozovic YR 2020 UL http://www.jneurosci.org/content/40/12/2390.abstract AB Hair cells in both the auditory and vestibular systems receive efferent innervation. A number of prior studies have indicated that efferent regulation serves to diminish the overall sensitivity of the auditory system. The efferent pathway is believed to affect the sensitivity and frequency selectivity of the hair cell by modulating its membrane potential. However, its effect on the mechanical response of the hair cell has not been established. We explored how stimulation of the efferent neurons affects the mechanical responsiveness of an individual hair bundle. We tested this effect on in vitro preparations of hair cells in the sacculi of American bullfrogs of both genders. Efferent stimulation routinely resulted in an immediate increase of the frequency of hair bundle spontaneous oscillations for the duration of the stimulus. Enlarging the stimulus amplitude and pulse length, or conversely, decreasing the interpulse interval led to oscillation suppression. Additionally, we tested the effects of efference on the hair bundle response to mechanical stimulation. The receptive field maps of hair cells undergoing efferent actuation demonstrated an overall desensitization with respect to those of unstimulated cells.SIGNIFICANCE STATEMENT The efferent system is an important aide for the performance of the auditory system. It has been seen to contribute to sound detection and localization, ototoxicity prevention, and speech comprehension. Although measurements have demonstrated that efference suppresses basilar membrane movement, there is still much unknown about how efferent activity affects hearing mechanics. Here, we explore the mechanical basis for the efferent system's capabilities at the level of the hair bundle. We present optical recordings, receptive field maps, and sensitivity curves that show a hair bundle is desensitized by efferent stimulation. This supports the hypothesis that efferent regulation may be a biological control parameter for tuning the hair bundle's mechanical sensitivity.