RT Journal Article SR Electronic T1 Organization of Corollary Discharge Neurons in Monkey Medial Dorsal Thalamus JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 6367 OP 6378 DO 10.1523/JNEUROSCI.2344-19.2020 VO 40 IS 33 A1 James Cavanaugh A1 Kerry McAlonan A1 Robert H. Wurtz YR 2020 UL http://www.jneurosci.org/content/40/33/6367.abstract AB A corollary discharge (CD) is a copy of a neuronal command for movement sent to other brain regions to inform them of the impending movement. In monkeys, a circuit from superior colliculus (SC) through medial-dorsal nucleus of the thalamus (MD) to frontal eye field (FEF) carries such a CD for saccadic eye movements. This circuit provides the clearest example of such internal monitoring reaching cerebral cortex. In this report we first investigated the functional organization of the critical MD relay by systematically recording neurons within a grid of penetrations. In two male rhesus macaque monkeys (Macaca mulatta), we found that lateral MD neurons carrying CD signals discharged before saccades to ipsilateral as well as contralateral visual fields instead of just contralateral fields, often had activity over large movement fields, and had activity from both central and peripheral visual fields. Each of these characteristics has been found in FEF, but these findings indicate that these characteristics are already present in the thalamus. These characteristics show that the MD thalamic relay is not passive but instead assembles inputs from the SC before transmission to cortex. We next determined the exact location of the saccade-related CD neurons using the grid of penetrations. The neurons occupy an anterior-posterior band at the lateral edge of MD, and we established this band in stereotaxic coordinates to facilitate future study of CD neurons. These observations reveal both the organizational features of the internal CD signals within the thalamus, and the location of the thalamic relay for those signals.SIGNIFICANCE STATEMENT A corollary discharge (CD) circuit within the brain keeps an internal record of physical movements. In monkeys and humans, one such CD keeps track of rapid eye movements, and in monkeys, a circuit carrying this CD extends from midbrain to cerebral cortex through a relay in the thalamus. This circuit provides guidance for eye movements, contributes to stable visual perception, and when defective, might be related to difficulties that schizophrenic patients have in recognizing their own movements. This report facilitates the comparison of the circuit in monkeys and humans, particularly for comparison of the location of the thalamic relay in monkeys and in humans.