RT Journal Article SR Electronic T1 Memory Destabilization and Reconsolidation Dynamically Regulate the PKMζ Maintenance Mechanism JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 4880 OP 4888 DO 10.1523/JNEUROSCI.2093-20.2021 VO 41 IS 22 A1 Matteo Bernabo A1 Josue Haubrich A1 Karine Gamache A1 Karim Nader YR 2021 UL http://www.jneurosci.org/content/41/22/4880.abstract AB Useful memory must balance between stability and malleability. This puts effective memory storage at odds with plasticity processes, such as reconsolidation. What becomes of memory maintenance processes during synaptic plasticity is unknown. Here we examined the fate of the memory maintenance protein PKMζ during memory destabilization and reconsolidation in male rats. We found that NMDAR activation and proteasome activity induced a transient reduction in PKMζ protein following retrieval. During reconsolidation, new PKMζ was synthesized to re-store the memory. Failure to synthesize new PKMζ during reconsolidation impaired memory but uninterrupted PKMζ translation was not necessary for maintenance itself. Finally, NMDAR activation was necessary to render memories vulnerable to the amnesic effect of PKMζ-antisense. These findings outline a transient disruption and renewal of the PKMζ memory maintenance mechanism during plasticity. We argue that dynamic changes in PKMζ protein levels can serve as an exemplary model of the molecular changes underlying memory destabilization and reconsolidation.SIGNIFICANCE STATEMENT Maintenance of long-term memory relies on the persistent activity of PKMζ. However, after retrieval, memories can become transiently destabilized and must be reconsolidated within a few hours to persist. During this period of plasticity, what happens to maintenance processes, such as those involving PKMζ, is unknown. Here we describe dynamic changes to PKMζ expression during both destabilization and reconsolidation of auditory fear memory in the amygdala. We show that destabilization induces a NMDAR- and proteasome-dependent loss of synaptic PKMζ and that reconsolidation requires synthesis of new PKMζ. This work provides clear evidence that memory destabilization disrupts ongoing synaptic maintenance processes which are restored during reconsolidation.