TY - JOUR T1 - Aversive Conditioning of Spatial Position Sharpens Neural Population-Level Tuning in Visual Cortex and Selectively Alters Alpha-Band Activity JF - The Journal of Neuroscience JO - J. Neurosci. SP - 5723 LP - 5733 DO - 10.1523/JNEUROSCI.2889-20.2021 VL - 41 IS - 26 AU - Wendel M. Friedl AU - Andreas Keil Y1 - 2021/06/30 UR - http://www.jneurosci.org/content/41/26/5723.abstract N2 - Processing capabilities for many low-level visual features are experientially malleable, aiding sighted organisms in adapting to dynamic environments. Explicit instructions to attend a specific visual field location influence retinotopic visuocortical activity, amplifying responses to stimuli appearing at cued spatial positions. It remains undetermined both how such prioritization affects surrounding nonprioritized locations, and if a given retinotopic spatial position can attain enhanced cortical representation through experience rather than instruction. The current report examined visuocortical response changes as human observers (N = 51, 19 male) learned, through differential classical conditioning, to associate specific screen locations with aversive outcomes. Using dense-array EEG and pupillometry, we tested the preregistered hypotheses of either sharpening or generalization around an aversively associated location following a single conditioning session. Competing hypotheses tested whether mean response changes would take the form of a Gaussian (generalization) or difference-of-Gaussian (sharpening) distribution over spatial positions, peaking at the viewing location paired with a noxious noise. Occipital 15 Hz steady-state visual evoked potential responses were selectively heightened when viewing aversively paired locations and displayed a nonlinear, difference-of-Gaussian profile across neighboring locations, consistent with suppressive surround modulation of nonprioritized positions. Measures of alpha-band (8–12 Hz) activity were differentially altered in anterior versus posterior locations, while pupil diameter exhibited selectively heightened responses to noise-paired locations but did not evince differences across the nonpaired locations. These results indicate that visuocortical spatial representations are sharpened in response to location-specific aversive conditioning, while top-down influences indexed by alpha-power reduction exhibit posterior generalization and anterior sharpening.SIGNIFICANCE STATEMENT It is increasingly recognized that early visual cortex is not a static processor of physical features, but is instead constantly shaped by perceptual experience. It remains unclear, however, to what extent the cortical representation of many fundamental features, including visual field location, is malleable by experience. Using EEG and an aversive classical conditioning paradigm, we observed sharpening of visuocortical responses to stimuli appearing at aversively associated locations along with location-selective facilitation of response systems indexed by pupil diameter and EEG alpha power. These findings highlight the experience-dependent flexibility of retinotopic spatial representations in visual cortex, opening avenues toward novel treatment targets in disorders of attention and spatial cognition. ER -