RT Journal Article SR Electronic T1 Perigenual and Subgenual Anterior Cingulate Afferents Converge on Common Pyramidal Cells in Amygdala Subregions of the Macaque JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 9742 OP 9755 DO 10.1523/JNEUROSCI.1056-21.2021 VO 41 IS 47 A1 Emily A. Kelly A1 V. Kaye Thomas A1 Apoorva Indraghanty A1 Julie L. Fudge YR 2021 UL http://www.jneurosci.org/content/41/47/9742.abstract AB The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed “hotspots.” In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were ∼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast “driver” function. Together, the results reveal a nested interaction in which pgACC (“conflict/social monitoring”) terminals converge with the broader sgACC (“salience”) terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting “internal arousal” states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.