RT Journal Article SR Electronic T1 Meclizine and Metabotropic Glutamate Receptor Agonists Attenuate Severe Pain and Ca2+ Activity of Primary Sensory Neurons in Chemotherapy-Induced Peripheral Neuropathy JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 6020 OP 6037 DO 10.1523/JNEUROSCI.1064-21.2022 VO 42 IS 31 A1 John Shannonhouse A1 Matteo Bernabucci A1 Ruben Gomez A1 Hyeonwi Son A1 Yan Zhang A1 Chih-Hsuan Ai A1 Hirotake Ishida A1 Yu Shin Kim YR 2022 UL http://www.jneurosci.org/content/42/31/6020.abstract AB Chemotherapy-induced peripheral neuropathy (CIPN) affects ∼68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and Group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of dorsal root ganglia (DRG) neurons in vivo. For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)−3,4-DCPG, the Group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)−3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that Group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persists several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Using in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/dorsal root ganglia (DRG) at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor (mGluR) agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.