Table 1 (Online supplemental material)

Reference	Species	Area	A	B	C	Method	Notes
Present study	Human	LGN	46.6	0.52	2.43	fMRI	
A	Macaque	LGN	21.5	2.66	2.29	Electrophysiology	ab
B	Macaque	LGN	10800 cells	1.31	1.90	Electrophysiology	b
C	Human	V1	853	3.67	2	fMRI	cd
D	Human	V1	237	0.83	2	fMRI	cd
E	Human	V1	593	0.33	2	VEP	cd
F	Human	V1	38800	4.31	3.26	fMRI	def
G	Human	V1	387	0.39	2.62	fMRI	cg
H	Human	V1	287	1.24	2	Phosphenes	cd
I	Human	V1	9220	5.42	2.90	fMRI	def
J	Human	V1	223	1.75	2	Phosphenes	cd
K	Macaque	V1	245	1.74	2	Deoxyglucose	cd
L	Macaque	V1	140	0.78	2.2	Electrophysiology	
M	Macaque	V1	149	0.94	2	Deoxyglucose	cd
N	Macaque	V1	246	1.71	2	Electrophysiology	cd

Table 1. Comparison of the eccentricity magnification factor in the human and macaque
$L G N$ and V1. Fit parameters A, B, and C are listed for each study for the volumetric (LGN) or areal (V1) magnification factors $M(r)=A(r+B)^{-C}$, where r is the eccentricity.

Notes:

a. We eliminated a scale factor that discounted interlaminar space.
b. These two analyses were derived from the same electrophysiological data set.
c. Parameter C was not free to vary in the fit.
d. Linear magnification was reported; its square is listed to represent areal magnification.
e. The original study did not report a function of this form. The data were reported in terms of linear distance from the 10° eccentricity point $\left(d_{10}\right)$ vs. eccentricity (r).

To obtain the parameters, we fit the function

$$
d_{10}(r)=\int_{10^{\circ}-r_{0}}^{r-r_{0}} A(x+B)^{-C} d x=\frac{A}{1-C}\left[\left(r-r_{0}+B\right)^{1-C}-\left(10^{\circ}-r_{0}+B\right)^{1-C}\right]
$$

f. These two studies reported separate measurements on the same two subjects.
g. The reported B parameter appeared anomalous, and we refit the data to

$$
d(r)=\int_{0^{\circ}}^{r-r_{0}} A(x+B)^{-C} d x=\frac{A}{1-C}\left[\left(r-r_{0}+B\right)^{1-C}-B^{1-C}\right] .
$$

References:

A. Malpeli and Baker, 1975, Malpeli et al., 1996
B. Malpeli and Baker, 1975, Connolly and Van Essen, 1984, Schein and de Monasterio, 1987
C. Dougherty et al., 2003
D. Duncan and Boynton, 2003
E. Slotnick et al., 2001
F. Engel et al., 1997
G. Sereno et al., 1995
H. Grüsser, 1995
I. Engel et al., 1994
J. Brindley and Lewin, 1968a, Cowey and Rolls, 1974, Grüsser, 1995
K. Tootell et al., 1988, Wässle et al., 1990
L. Van Essen et al., 1984
M. Tootell et al., 1982
N. Hubel and Wiesel, 1974, Hubel and Freeman, 1977

