Supplemental Table 4. Significantly cortical thinning within the ROIs in AD patients as compared to controls

Regions	T value	P value
STG.R	-5.066	0.00005
PHG.R	-5.055	0.00006
PCU.L	-4.516	0.0006
SMG.R	-4.451	0.0008
UNC.R	-4.368	0.0011
STG.L	-4.288	0.0016
PHG.L	-4.181	0.0024
ITG.R	-4.177	0.0025
ANG.R	-3.987	0.0052
PCU.R	-3.922	0.0067
MTG.R	-3.889	0.0076
IFG.R	-3.775	0.0116
INS.R	-3.678	0.0166
MFG.R	-3.305	0.0615
SOG.L	-3.200	0.0874
MTG.L	-3.154	0.1015
SMG.L	-3.147	0.1038

Cortical regions showing significantly AD-associated thinning were listed. The regions were parcellated by a pre-defined atlas (Supplemental Table 1) and mean cortical thickness for each region was measured as the average thickness of all vertices defined as belonging to that region (see Methods and Materials for details). To determine the significance of the differences in regional mean cortical thickness between normal controls and AD patients, a linear regression analysis was performed at every region, regressing regional mean thickness against clinical state (controls vs. AD). This analysis also included age and gender as covariates. *P* values indicate the significant level after a Bonferonni correction for multiple comparisons. It is noted that the results shown in the table are compatible with a vertex-by-vertex analysis about focal cortical thinning (Supplemental Figure 3). For the abbreviation of the regions, see Supplemental Table 1.