A β_{42} interacts selectively with the $\alpha7nAChRs$. Using synaptosomes prepared from rat frontal cortices, the selectivity of $A\beta_{42}$ - $\alpha7nAChR$ interaction was determined by comparing anti-receptor immunoprecipitates (**R**) of the Kreb's-Ringer incubated synaptosomal lysate to anti- $A\beta_{42}$ immunoprecipitates (**A**) of the $A\beta_{42}$ -incubated synaptosomal lysate with pre-immune rabbit IgG (**I**) as a control. Western blots using specific antibodies directed against the indicated receptors reveals that $A\beta_{42}$ selectively associated with the $\alpha7nAChRs$. The selective $A\beta_{42}$ - $\alpha7nAChR$ association shown here is consistent with the result from our previous studies (Wang et al., 2000a, b). The blots shown are the representative of 3 individual determinations from frontal cortex of one rat. Rat frontal cortex with postmortem delays retains $\alpha 7nAChR$, NMDAR and voltage-gated Ca²⁺ channel responsiveness measured by stimulation-induced Ca²⁺ influx. To simulate postmortem delays, rats were sacrificed and placed at 25°C for 4-hr or 4°C for 0, 4, 8 or 16 hr. At the indicated time, brains were removed and frontal cortices were dissected, frozen immediately on dry ice and stored at -80°C for 1 week. For comparison, fresh rat brain frontal cortices (fresh 0 hr) were obtained. Synaptosomes (50 µg) prepared from these tissues were used to assess α7nAChR, NMDAR and voltage-gated Ca²⁺ channel function respectively by Ca²⁺ influx in response to 5-min 0.1-10 µM PNU 282987, 5-min 0.1 - 10 µM NMDA/ 1 µM glycine and 1-min 65 min K⁺-depolarization. Basal, non-stimulated Ca²⁺ influx levels in synaptosomes from fresh 0 hr, frozen 0 hr, 25° C 4 hr, 4° C 4 hr, 4° C 8 hr, 4° C 16 hr were 5660.4 ± 321.9 , 5060.2 ± 218.3 , 2285.3 ± 140.1 , 3600.3 ± 150.6 , 3194.6 ± 157.2 and 2648.8 ± 145.3 cpm, respectively. In addition, stimulation-induced Ca²⁺ influx through α7nAChRs, NMDARs and voltage-gated Ca²⁺ channels measured by PNU 282987 and NMDA/glycine dose-dependency and K⁺-depolarization responsiveness in synaptosomes are relatively stable measures in relation to the postmortem intervals. Data are expressed as means \pm s.e.m of the % stimulation above basal ⁴⁵Ca²⁺ levels in cpm of 5 independent determinations each used an individual rat brain. *p<0.05, **p<0.01 compared to fresh 0 hr induced by a specific dose of stimulus (One-factor ANOVA followed by Newman-Keuls multiple comparisons). Rat frontal cortex with postmortem delays maintains stable NMDAR signaling, NMDAR – **PSD-95 coupling and assembly integrity.** To simulate postmortem delays, rats were sacrificed and placed at 25°C for 4 hr or 4°C for 0, 4, 8 or 16 hr. At the indicated time, brains were removed and frontal cortices dissected, frozen immediately on dry ice and stored at -80°C for 1 week. After slowly thawing, frontal cortical slices were used to assess the effect of postmortem delay on NMDAR signaling, NMDAR – PSD-95 interaction and NMDAR assemblies following incubation with either Kreb's-Ringer or 10 µM NMDA/1 µM glycine for 30 min. The levels of PLCγ1, pY⁴⁰²PyK2, pY⁴¹⁶Src, PSD-95 together with NR2A and NR1 in the anti-NR1 immunoprecipitate from frontal cortical slice lysates were determined by Western blotting (A) and quantified using densitometric scanning (B). Although PLCyl recruitment under nonstimulated basal condition was essentially undetectable, NMDA/glycine-stimulated PLCy1 were similar among 5 time points. The NMDA/glycine-induced PyK2 and Src activation, measured by the ratio of NMDA/glycine-induced pY⁴⁰²PyK2, pY⁴¹⁶Src and PSD-95 association did not differ, with respect to its basal level, at any time point (p = 0.25). Similarly, NR1 and NR2A levels were comparable among all 5 time points with or without NMDA/glycine stimulation. Data are expressed as means \pm s.e.m. of the optical intensity in arbitrary units derived from 4 independent determinations from an individual rat brain. There was no statistical difference at any time points for any parameter examined (ANOVA). Reduced acetylcholine synthesis with normal high-affinity choline uptake in synaptosomes of postmortem frontal cortices from AD subjects. Synaptosomes prepared from frontal cortices of 11 control/AD pairs were used to assess active high-affinity choline uptake (**A**) and ChAT activity (**B**) by incubating with 0.1 μ M [3 H]choline containing Kreb's-Ringer for 5 and 30 min, respectively. The level of high-affinity choline uptake per active cholinergic nerve terminal in frontal cortical synaptosomes was also estimated using the high-affinity choline uptake/ChAT activity ratio (**C**). A 40.6% reduction of ChAT activity with a 2-fold increase choline uptake per viable nerve terminal was detected in AD tissues. Data are expressed as means \pm s.e.m. of 11 pairs of frontal cortical synaptosomes from control and AD subjects. *p < 0.01 comparing control to the best matched AD by two-tailed Student's t test.