Skip to main content

Behavioural Control of Breathing in Mammals: Role of the Midbrain Periaqueductal Gray

  • Conference paper
Book cover Post-Genomic Perspectives in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 551))

Abstract

Brainstem respiratory neurons play a critical role in the generation of basic breathing rhythm in mammals (Richter et al., 2001, Feldman et al., 2003). This basic respiratory rhythm is modified by neurons probably with behaviour roles to support development of emotional expressivity. Such modulatory neurons are thought to be hierarchically organised throughout the neuraxis from the cerebral cortex through to the brainstem and spinal cord (Holstege, 1991a,b). One area within this hierarchy, that has been shown to be involved in motor patterning of defensive behaviour (in rats and cats) and vocalization (in cats) is the midbrain periaqueductal gray (PAG) (Carrive et al., 1987, Zhang et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richter, D. W., Spyer, K. M., 2001. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends in Neuroscience, 24, No. 8, 464–472.

    Article  CAS  Google Scholar 

  2. Feldman, J. L., Mitchell, G. S., Nattie, E. S., 2003. Breathing: Rhythmicity, Plasticity, Chemosensitivity. Annu. Rev. Neurosci. 26, 239–266.

    Article  CAS  PubMed  Google Scholar 

  3. Holstege, G., 1991a. Descending motor pathways and the spinal motor system. Limbic and non-limbic components. In Progress in Brain Research. Edited by G. Holstege Amsterdam: Elsevier Vol 87. p 307–421.

    Google Scholar 

  4. Holstege, G., 1991b. Descending pathways from the periaqueductal gray and adjacent areas. In The Midbrain Periaqueductal Gray Matter: Functional Anatomical and Immunohistochemical Organization. Edited by A. Depaulis and R. Bandler. New York Plenum Press, p 239–265.

    Google Scholar 

  5. Carrive, P., Dampney, R. A. L., Bandler, R., 1987. Excitation of neurons in a restricted region of the periaqueductal gray elicits both behavioural and cardiovascular components of defence reaction in unanaesthetised decerebrate cat. Neurosci. Lett, 81, 273–278.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, S. P., Davis, P. J., Bandler, R., Carrive, P., 1994. Brainstem Integration of Vocalization: Role of the Midbrain Periaqueductal Gray. Journal of Neurophysiology, 72, 1337–56.

    CAS  PubMed  Google Scholar 

  7. Li, Z.Y., Xia, B.L., Huang, C.J., 1992. Effects of microinjection of L-glutamate into locus coeruleus complex area on respiration. J. Tongji Medical University 12, 205–208.

    CAS  Google Scholar 

  8. Champagnat, J., Denavit-Saubie, M., Henry, J., Leviel, V., 1979. Catecholaminergic depressant effects on bulbar respiratory mechanisms. Brain Res. 480, 57–68.

    Article  Google Scholar 

  9. Feldman, P.D., Felder, R.B., 1989. Alpha 2-adrenergic modulation of synaptic excitability in the rat nucleus tractus solitarius. Brain Res. 480, 190–197.

    Article  CAS  PubMed  Google Scholar 

  10. Depaulis, A., Keay., K. A., Bandler, R. 1992. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat. Exp. Brain. Res. 90, 307–318.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman, J. L., Speck, D. F., 1983. Interactions among inspiratory neurons in dorsal and ventral respiratory groups in the cat medulla. J. Neurophysiol. 49: 472–490.

    CAS  PubMed  Google Scholar 

  12. Huang, Z. G., Subramanian, S. H., Balnave, R. J., Turman, A. B., Chow, C. M., 2000. Roles of periaqueductal gray and nucleus tractus solitarius in cardiorespiratory function in the rat brainstem. Respiration Physiology, 120, 185–195.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Subramanian, H.H., Balnave, R.J., Chow, C.M. (2004). Behavioural Control of Breathing in Mammals: Role of the Midbrain Periaqueductal Gray. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_21

Download citation

Publish with us

Policies and ethics