Skip to main content

N-Acetylaspartate Metabolism in Neural Cells

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 576))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. H.H. Tallan, S. Moore, and W.H. Stein, N-acetyl-L-aspartic acid in brain, J. Biol. Chem. 219, 257–264 (1956).

    PubMed  CAS  Google Scholar 

  2. T.B. Patel and J.B. Clark, Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport, Biochem. J. 184, 539–546 (1979).

    PubMed  CAS  Google Scholar 

  3. T.E. Bates, M. Strangward, J. Keelan, G.P. Davey, P.M. Munro, and J.B. Clark, Inhibition of N-acetylaspartate production: implications for 1H-MRS studies in vivo, Neuroreport 7, 1397–400 (1996).

    PubMed  CAS  Google Scholar 

  4. J.V. Nadler and J.R. Cooper, N-Acetyl-L-aspartic acid content of human neural tumours and bovine periperal nervous tissues, J. Neurochem. 19, 313–319 (1972).

    Article  PubMed  CAS  Google Scholar 

  5. K.J. Koller, R. Zaczek, and J.T. Coyle, N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method, J. Neurochem. 43, 1136–42 (1984).

    PubMed  CAS  Google Scholar 

  6. J.R. Moffett, M.A. Namboodiri, C.B. Cangro, and J.H. Neale, Immunohistochemical localization of N-acetylaspartate in rat brain, Neuroreport 2, 131–4 (1991).

    PubMed  CAS  Google Scholar 

  7. M.L. Simmons, C.G. Frondoza, and J.T. Coyle, Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies, Neuroscience 45, 37–45 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. J. Urenjak, S.R. Williams, D.G. Gadian, and M. Noble, Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro, J. Neurochem. 59, 55–61 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. J. Urenjak, S.R. Williams, D.G. Gadian, and M. Noble, Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types, J. Neurosci. 13, 981–9 (1993).

    PubMed  CAS  Google Scholar 

  10. H. Shigematsu, N. Okamura, H. Shimeno, Y. Kishimoto, L. Kan, and C. Fenselau, Purification and characterization of the heat-stable factors essential for the conversion of lignoceric acid to cerebronic acid and glutamic acid: identification of N-acetyl-L-aspartic acid, J. Neurochem. 40, 814–820 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. A.F.J. D’Adamo and F.M. Yatsu, Acetate metabolism in the nervous system. N-acetyl-L-aspartic acid and the biosynthesis of brain lipids, J. Neurochem. 13, 961–5 (1966).

    Article  PubMed  CAS  Google Scholar 

  12. A.F.J. D’Adamo, L.I. Gidez, and F.M.J. Yatsu, Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain, Exp. Brain Res. 5, 267–73 (1968).

    Article  PubMed  CAS  Google Scholar 

  13. J.C. McIntosh and J.R. Cooper, Studies on the function of N-acetyl-L-aspartic acid in brain, J. Neurochem. 12, 825–835 (1965).

    Article  PubMed  CAS  Google Scholar 

  14. D.L. Birken and W.H. Oldendorf, N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain, Neurosci. Biobehav. Rev. 13, 23–31 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. N. De Stefano, P.M. Matthews, and D.L. Arnold, Reversible decreases in N-acetyl-aspartate after acute brain injury, Magn. Reson. Med. 34, 721–7 (1995).

    PubMed  Google Scholar 

  16. N.R. Jagannathan, N. Tandon, P. Raghunathan, and N. Kochupillai, Reversal of abnormalities of myelination by thyroxine therapy in congenital hypothyroidism: localized in vivo proton magnetic resonance spectroscopy (MRS) study, Dev. Brain Res. 109, 179–86 (1998).

    Article  CAS  Google Scholar 

  17. M. Mayer, K. Bhakoo, and M. Noble, Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro, Development 120, 143–53 (1994).

    PubMed  CAS  Google Scholar 

  18. B.A. Barres, J.F. Burne, B. Holtmann, H. Thoenen, M. Sendtner, and M.C. Raff, Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation, Mol. Cell Neurosci. 8, 146–56 (1996).

    Article  CAS  Google Scholar 

  19. S.M. Birnbaum, Amino acid acylases I and II from Hog Kidney, Methods in Enzymology 2, 115–119 (1955).

    Google Scholar 

  20. R. Kaul, G.P. Gao, M. Aloya, K. Michals, and R. Matalon, Identification of mutations in human aspartoacylase (hasp) gene in Canavan disease, Am. J. Hum. Genetics 53, 215–215 (1993).

    Google Scholar 

  21. M.M. Canavan, Schildler’s encephalitis periaxialsis diffusa, Arch. Neurol. Psychiatry 25, 299–308 (1931).

    Google Scholar 

  22. L. Hagenfeldt, I. Bollgren, and N. Venizelos, N-acetylaspartic aciduria due to aspartoacylase deficiency-a new aetiology of childhood leukodystrophy, J. Inherit. Metab. Disease 10, 135–141 (1987).

    Article  CAS  Google Scholar 

  23. R. Matalon, R. Kaul, J. Casanova, K. Michals, A. Johnson, I. Rapin, P. Gashkoff, and M. Deanching, Aspartoacylase deficiency: The enzyme defect in Canavan disease, J. Inherit. Metab. Disease 12, 329–331 (1989).

    Article  Google Scholar 

  24. R. Burri, C. Steffen, and N. Herschkowitz, N-acetyl-L-Aspartate is a major source of acetyl groups for lipid synthesis during rat brain development, Dev. Neurosci. 13, 403–411 (1991).

    PubMed  CAS  Google Scholar 

  25. M.H. Baslow and T.R. Resnik, Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms, J. Mol. Neurosci. 9, 109–25 (1997).

    Article  PubMed  CAS  Google Scholar 

  26. T.N. Sager, C. Thomsen, J.S. Valsborg, H. Laursen, and A.J. Hansen, Astroglia contain a specific transport mechanism for N-acetyl-L-aspartate, J. Neurochem. 73, 807–11 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. F.B. Goldstein, The enzymatic synthesis of N-acetyl-L-aspartic acid by subcellular preparations of rat brain, J. Biol. Chem. 244, 4257–60 (1969).

    PubMed  CAS  Google Scholar 

  28. C.B. Cangro, M.A. Namboodiri, L.A. Sklar, A. Corigliano Murphy, and J.H. Neale, Immunohistochemistry and biosynthesis of N-acetylaspartylglutamate in spinal sensory ganglia, J. Neurochem. 49, 1579–88 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. L. Ory Lavollee, R.D. Blakely, and J.T. Coyle, Neurochemical and immunocytochemical studies on the distribution of N-acetyl-aspartylglutamate and N-acetyl-aspartate in rat spinal cord and some peripheral nervous tissues, J. Neurochem. 48, 895–9 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. W. Grodd, I. Krageloh Mann, D. Petersen, F.K. Trefz, and K. Harzer, in vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy [letter], Lancet 336, 437–8 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. D.S. Dunlop, D.M. Mchale, and A. Lajtha, Decreased brain N-Acetyl-aspartate in huntingtons disease, Brain Research 580, 1–2 (1992).

    Article  Google Scholar 

  32. D.J. Meyerhoff, S. MacKay, L. Bachman, N. Poole, W.P. Dillon, M.W. Weiner, and G. Fein, Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging, Neurology 43, 509–15 (1993).

    PubMed  CAS  Google Scholar 

  33. P. Gideon, O. Henriksen, B. Sperling, P. Christiansen, T.S. Olsen, H.S. Jorgensen, and P. Arliensoborg, Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke-a proton magnetic-resonance spectroscopy study, Stroke 23, 1566–1572 (1992).

    PubMed  CAS  Google Scholar 

  34. R. Kaul, K. Michals, J. Casanova, and R. Matalon, The role of N-acetylaspartic acid in brain metabolism and the pathogenesis in Canavan disease, Intl. Pediat. 6, 40–43 (1991).

    Google Scholar 

  35. S. Confort-Gouny, J. Vion-Dury, F. Nicoli, P. Dano, A. Donnet, N. Grazziani, J.L. Gastaut, F. Grisoli, and P.J. Cozzone, A multiparametric data analysis showing the potential of localized proton MR spectroscopy of the brain in the metabolic characterization of neurological diseases, J. Neurol. Sci. 118, 123–33 (1993).

    Article  PubMed  CAS  Google Scholar 

  36. A.F.J. D’Adamo, J.C. Smith, and C. Woiler, The occurrence of N-acetylaspartate amidohydrolase (aminoacylase II) in the developing rat, J. Neurochem. 20, 1275–8 (1973).

    Article  PubMed  CAS  Google Scholar 

  37. C.L. Florian, S.R. Williams, K.K. Bhakoo, and M.D. Noble, Regional and developmental variations in metabolite concentration in the rat brain and eye: a study using 1H-NMR spectroscopy and high performance liquid chromatography, Neurochem. Res. 21, 1065–74 (1996).

    PubMed  CAS  Google Scholar 

  38. R. Kaul, J. Casanova, A.B. Johnson, P. Tang, and R. Matalon, Purification, characterization, and localization of aspartoacylase from bovine brain, J. Neurochem. 56, 129–35 (1991).

    Article  PubMed  CAS  Google Scholar 

  39. M.H. Baslow, R.F. Suckow, V. Sapirstein, and B.L. Hungund, Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes, J. Mol. Neurosci. 13, 47–53 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. K.K. Bhakoo and D. Pearce, in vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo, J. Neurochem. 74, 254–62 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. K.K. Bhakoo, T.J. Craig, and P. Styles, Developmental and regional distribution of aspartoacylase in rat brain tissue, J. Neurochem. 79, 211–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. J.H. Bottenstein and G.H. Sato, Growth of a rat neuroblastoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. U.S.A. 76, 514–517 (1979).

    Article  PubMed  CAS  Google Scholar 

  43. P.F. Bartlett, M.D. Noble, R.M. Pruss, M.C. Raff, S. Rattray, and C.A. Williams, Rat neural antigen-2 (RAN-2): a cell surface antigen on astrocytes, ependymal cells, Muller cells and lepto-meninges defined by a monoclonal antibody, Brain Res. 204, 339–51 (1981).

    Article  PubMed  CAS  Google Scholar 

  44. B. Ranscht, P.A. Clapshaw, J. Price, M. Noble, and W. Seifert, Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside, Proc. Natl. Acad. Sci. U.S.A. 79, 2709–13 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. G.S. Eisenbarth, F.S. Walsh, and M. Nirenberg, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. U.S.A. 76, 4913–7 (1979).

    Article  PubMed  CAS  Google Scholar 

  46. O. Bogler, D. Wren, S.C. Barnett, H. Land, and M. Noble, Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, Proc. Natl. Acad. Sci. U.S.A. 87, 6368–72 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. M.C. Raff, R. Mirsky, K.L. Fields, R.P. Lisak, S.H. Dorfman, D.H. Silberberg, N.A. Gregson, S. Leibowitz, and M.C. Kennedy, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature 274, 813–816 (1978).

    PubMed  CAS  Google Scholar 

  48. M. Noble and K. Murray, Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell, EMBO J. 3, 2243–7 (1984).

    PubMed  CAS  Google Scholar 

  49. K.K. Bhakoo, I.T. Williams, S.R. Williams, D.G. Gadian, and M.D. Noble, Proton nuclear magnetic resonance spectroscopy of primary cells derived from nervous tissue, J. Neurochem. 66, 1254–63 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. J.N. Wood and B.H. Anderton, Monoclonal antibodies to mammalian neurofilaments, Biosci. Rep. 1, 263–8 (1981).

    Article  PubMed  CAS  Google Scholar 

  51. K.J. Koller and J.T. Coyle, Ontogenesis of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in rat brain, Brain Res. 317, 137–40 (1984).

    PubMed  CAS  Google Scholar 

  52. O.H. Lowry, N.J. Rosenbrough, and A.L. Farr, Protein measurement with the Folin phenol regent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  53. C.L. Florian, N.E. Preece, K.K. Bhakoo, S.R. Williams, and M. Noble, Characteristic metabolic profiles revealed by 1H-NMR spectroscopy for three types of human brain and nervous system tumours, NMR Biomed. 8, 253–64 (1995).

    PubMed  CAS  Google Scholar 

  54. K.A. Stockli, L.E. Lillien, M. Naher Noe, G. Breitfeld, R.A. Hughes, M.C. Raff, H. Thoenen, and M. Sendtner, Regional distribution, developmental changes, and cellular localization of CNTF-mRNA and protein in the rat brain, J. Cell Biol. 115, 447–59 (1991).

    Article  PubMed  CAS  Google Scholar 

  55. B.A. Barres, I.K. Hart, H.S. Coles, J.F. Burne, J.T. Voyvodic, W.D. Richardson, and M.C. Raff, Cell death and control of cell survival in the oligodendrocyte lineage, Cell 70, 31–46 (1992).

    Article  PubMed  CAS  Google Scholar 

  56. B.A. Barres, R. Schmid, M. Sendnter, and M.C. Raff, Multiple extracellular signals are required for long-term oligodendrocyte survival, Development 118, 283–95 (1993).

    PubMed  CAS  Google Scholar 

  57. H.H. Tallan, Studies on the distribution of N-acetyl-L-aspartic acid in brain, J. Biol. Chem. 224, 41–5 (1957).

    PubMed  CAS  Google Scholar 

  58. K. Hida, [In vivo 1H and 31P NMR spectroscopy of the developing rat brain], Hokkaido Igaku Zasshi 67, 272–80 (1992).

    PubMed  CAS  Google Scholar 

  59. T. Kato, M. Nishina, K. Matsushita, E. Hori, T. Mito, and S. Takashima, Neuronal maturation and N-acetyl-L-aspartic acid development in human fetal and child brains, Brain Dev. 19, 131–3 (1997).

    Article  PubMed  CAS  Google Scholar 

  60. P.B. Toft, Metabolite concentrations in the developing brain estimated with proton MR spectroscopy, J. Magn. Reson. Imaging 4, 674–680 (1994).

    PubMed  CAS  Google Scholar 

  61. A.F.J. D’Adamo and A.P. D’Adamo, Acetyl transport mechanisms in the nervous system. The oxoglutarate shunt and fatty acid synthesis in the developing rat brain, J. Neurochem. 15, 315–23 (1968).

    Article  PubMed  CAS  Google Scholar 

  62. F.A. McMorris and R.D. McKinnon, Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease, Brain Pathol. 6, 313–29 (1996).

    PubMed  CAS  Google Scholar 

  63. C.S. Raine, The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion, J. Neuroimmunol. 77, 135–52 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. C.F. Lucchinetti, W. Brueck, M. Rodriguez, and H. Lassmann, Multiple sclerosis: lessons from neuropathology, Semin. Neurol. 18, 337–49 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. L. Zhou, B.D. Trapp, and R.H. Miller, Demyelination in the central nervous system mediated by an antioligodendrocyte antibody, J. Neurosci. Res. 54, 158–68 (1998).

    Article  PubMed  CAS  Google Scholar 

  66. C.A. Davie, C.P. Hawkins, G.J. Barker, A. Brennan, P.S. Tofts, D.H. Miller, and W.I. McDonald, Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions, Brain 117, 49–58 (1994).

    PubMed  Google Scholar 

  67. T.L. Richards, Proton MR spectroscopy in multiple-sclerosis-value in establishing diagnosis, monitoring progression, and evaluating therapy, Am. J. Roentgenol. 157, 1073–1078 (1991).

    CAS  Google Scholar 

  68. N. De Stefano, P.M. Matthews, S. Narayanan, G.S. Francis, J.P. Antel, and D.L. Arnold, Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient, Neurology 49, 1138–41 (1997).

    PubMed  Google Scholar 

  69. P.A. Narayana, T.J. Doyle, D. Lai, and J.S. Wolinsky, Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis, Ann. Neurol. 43, 56–71 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. P.M. Matthews, E. Pioro, S. Narayanan, N. De Stefano, L. Fu, G. Francis, J. Antel, C. Wolfson, and D.L. Arnold, Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy, Brain 119, 715–22 (1996).

    PubMed  Google Scholar 

  71. L. Fu, P.M. Matthews, N. De Stefano, K.J. Worsley, S. Narayanan, G.S. Francis, J.P. Antel, C. Wolfson, and D.L. Arnold, Imaging axonal damage of normal-appearing white matter in multiple sclerosis, Brain 121, 103–13 (1998).

    Article  PubMed  Google Scholar 

  72. H. Sugie, S. Tsurui, A. Ishikawa, F. Matsuda, Y. Sugie, Y. Igarashi, and Y. Fujise, [Effects of neonatal hypothyroidism on brain development: analysis of brain metabolites sing high resolution phosphorus and proton magnetic resonance (NMR) spectroscopy]. [Article in Japanese], No To Hattatsu. 22, 166–72 (1990).

    PubMed  CAS  Google Scholar 

  73. M.J. Malone, N.P. Rosman, M. Szoke, and D. Davis, Myelination of brain in experimental hypothyroidism. An electron-microscopic and biochemical study of purified myelin isolates, J. Neurol. Sci. 26, 1–11 (1975).

    Article  PubMed  CAS  Google Scholar 

  74. J.M. Matthieu, P.J. Reier, and J.A. Sawchak, Proteins of rat brain myelin in neonatal hypothyroidism, Brain Res. 84, 443–51 (1975).

    Article  PubMed  CAS  Google Scholar 

  75. T. Valcana, E.R. Einstein, J. Csejtey, K.B. Dalal, and P.S. Timiras, Influence of thyroid hormones on myelin proteins in the developing rat brain, J. Neurol. Sci. 25, 19–27 (1975).

    Article  PubMed  CAS  Google Scholar 

  76. R.A. Harris and H.H. Loh, Brain sulfatide and non-lipid sulfate metabolism in hypothyroid rats, Res. Commun. Chem. Pathol. Pharmacol. 24, 169–179 (1979).

    PubMed  CAS  Google Scholar 

  77. J.M. Pasquini, I.A. Faryna-de-Raveglia, N. Capitman, and E.F. Soto, Neonatal hypothyroidism and early undernutrition in the rat: defective maturation of structural membrane components in the central nervous system, Neurochem. Res. 6, 979–91 (1981).

    Article  PubMed  CAS  Google Scholar 

  78. T. Noguchi, T. Sugisaki, I. Satoh, and M. Kudo, Partial restoration of cerebral myelination of the congenitally hypothyroid mouse by parenteral or breast milk administration of thyroxine, J. Neurochem. 45, 1419–26 (1985).

    Article  PubMed  CAS  Google Scholar 

  79. G. Almazan, P. Honegger, and J.M. Matthieu, Triiodothyronine stimulation of oligodendroglial differentiation and myelination. A developmental study, Dev. Neurosci. 7, 45–51 (1985).

    PubMed  CAS  Google Scholar 

  80. G. Shanker, S.G. Amur, and R.A. Pieringer, Investigations on myelinogenesis in vitro: a study of the critical period at which thyroid hormone exerts its maximum regulatory effect on the developmental expression of two myelin associated markers in cultured brain cells from embryonic mice, Neurochem. Res. 10, 617–25 (1985).

    Article  PubMed  CAS  Google Scholar 

  81. S.P. Porterfield and C.E. Hendrich, The role of thyroid hormones in prenatal and eonatal neurological development—current perspectives, Endocr. Rev. 14, 94–106 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. N. Ibarrola, M. Mayer-Proschel, A. Rodriguez-Pena, and M. Noble, Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro, Dev. Biol. 180, 1–21 (1996).

    Article  PubMed  CAS  Google Scholar 

  83. S.C. Ahlgren, H. Wallace, J. Bishop, C. Neophytou, and M.C. Raff, Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro, Mol. Cell Neurosci. 9, 420–32 (1997).

    Article  PubMed  CAS  Google Scholar 

  84. F.B. Gao, J. Apperly, and M. Raff, Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells, Dev. Biol. 197, 54–66 (1998).

    Article  PubMed  CAS  Google Scholar 

  85. C. Bjartmar, J. Battistuta, N. Terada, E. Dupree, and B.D. Trapp, N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve, Ann. Neurol. 51, 51–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. M. Noble and G. Wolswijk, Development and regeneration in the O-2A lineage: studies in vitro and in vivo, J. Neuroimmunol 40, 287–93 (1992).

    Article  PubMed  CAS  Google Scholar 

  87. M.C. Raff, Glial cell diversification in the rat optic nerve, Science 243, 1450–5 (1989).

    Article  PubMed  CAS  Google Scholar 

  88. M.C. Raff, C. Ffrench Constant, and R.H. Miller, Glial cells in the rat optic nerve and some thoughts on remyelination in the mammalian CNS, J. Exp Biol. 132, 35–41 (1987).

    PubMed  CAS  Google Scholar 

  89. P.C. Brunjes, A comparative study of prenatal development in the olfactory bulb, neocortex and hippocampal region of the precocial mouse Acomys cahirinus and rat, Dev. Brain Res. 49, 7–25 (1989).

    Article  CAS  Google Scholar 

  90. A.K. Groves, A. Entwistle, P.S. Jat, and M. Noble, The characterization of astrocyte cell lines that display properties of glial scar tissue, Dev. Biol. 159, 87–104 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. C.A. Haas, U. Rauch, N. Thon, T. Merten, and T. Deller, Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes, J. Neurosci. 19, 9953–63 (1999).

    PubMed  CAS  Google Scholar 

  92. R.J. McKeon, M.J. Jurynec, and C.R. Buck, The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar, J. Neurosci. 19, 10778–88 (1999).

    PubMed  CAS  Google Scholar 

  93. V. Gallo and A. Bertolotto, Extracellular matrix of cultured glial cells: selective xpression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors, Exp. Cell Res. 187, 211–23 (1990).

    Article  PubMed  CAS  Google Scholar 

  94. K. Kitada, T. Akimitsu, Y. Shigematsu, A. Kondo, T. Maihara, N. Yokoi, T. Kuramoto, M. Sasa, and T. Serikawa, Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system, J. Neurochem. 74, 2512–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. T. Akimitsu, K. Kurisu, R. Hanaya, K. Iida, Y. Kiura, K. Arita, H. Matsubayashi, K. Ishihara, K. Kitada, T. Serikawa, and M. Sasa, Epileptic seizures induced by N-acetyl-L-aspartate in rats: in vivo and in vitro studies, Brain Res. 861, 143–50 (2000).

    Article  PubMed  CAS  Google Scholar 

  96. N. De Stefano, P.M. Matthews, L. Fu, S. Narayanan, J. Stanley, G.S. Francis, J.P. Antel, and D.L. Arnold, Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study, Brain 121, 1469–77 (1998).

    Article  PubMed  Google Scholar 

  97. C.N. Madhavarao, J.R. Moffett, R.A. Moore, R.E. Viola, M.A. Namboodiri, and D.M. Jacobowitz, Immunohistochemical localization of aspartoacylase in the rat central nervous system, J. Comp. Neurol. 472, 318–29 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Bhakoo, K.K., Craig, T., Pearce, D. (2006). N-Acetylaspartate Metabolism in Neural Cells. In: Moffett, J.R., Tieman, S.B., Weinberger, D.R., Coyle, J.T., Namboodiri, A.M.A. (eds) N-Acetylaspartate. Advances in Experimental Medicine and Biology, vol 576. Springer, Boston, MA . https://doi.org/10.1007/0-387-30172-0_3

Download citation

Publish with us

Policies and ethics