Skip to main content

Cortical Processing during Dynamic Motor Adaptation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

In this chapter we investigate the role of motor cortex in adapting movements to novel dynamic environments. We present results from two experiments in which monkey or human subjects learned to make two-dimensional reaching movements while holding a robotic manipulandum that applied a predictable pattern of forces (a curl field) to their hand. In the first study, we analyzed electrophysiological data recorded in motor cortex while monkeys adapted or readapted to the novel forces on each day of the experiment. In the second study, we perturbed the excitability of motor cortex using repetitive transcranial magnetic stimulation (rTMS) as human participants adapted to the forces. From the first experiment, we present qualitative evidence that a network of cortical areas including the supplementary motor area, premotor cortex, and primary motor cortex (M1) not only encodes kinematic and dynamic parameters of motor execution, but also registers changes in encoding that could provide a substrate for motor memory. Based on the second experiment, we qualify the role of M1 in motor memory, by showing that its disruption by rTMS does not interfere with the process of initial motor adaptation, but rather with offline improvement as measured at retest on the following day.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baraduc P, Lang N, Rothwell JC, Wolpert DM (2004) Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14: 252–256.

    PubMed  CAS  Google Scholar 

  • Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16: 1462–1473.

    Article  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48: 1398–1403.

    PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44: 773–791.

    PubMed  CAS  Google Scholar 

  • Della-Maggiore V, Malfait N, Ostry DJ, Paus T (2004) Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J Neurosci 24: 9971–9976.

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25: 9919–9931.

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Sawaki L, Madupu G, Cohen LG, Shadmehr R (2002) Mechanisms influencing acquisition and recall of motor memories. J Neurophysiol 88: 2114–2123.

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31: 14–27.

    PubMed  CAS  Google Scholar 

  • Fayé IC (1983) An impedance controlled manipulandum for human movement studies. M.S. Thesis. Cambridge, MA: MIT Press.

    Google Scholar 

  • ∗Gandolfo F, Li CR, Benda BJ, Padoa-Schioppa C, Bizzi E (2000) Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc Natl Acad Sci USA 97: 2259–2263.

    Article  PubMed  CAS  Google Scholar 

  • Gangitano M, Valero-Cabré A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113: 1249–1257.

    Article  PubMed  Google Scholar 

  • Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from multiple cortical spike trains. Science 170: 758–762.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9: 2080–2102.

    PubMed  CAS  Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2003) Sequence, time, or state representation: how does the motor control system adapt to variable environments? Biol Cybern 89: 10–21.

    PubMed  Google Scholar 

  • Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, Fischman AJ, Alpert NM (1998) Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp 6: 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72: 299–313.

    PubMed  CAS  Google Scholar 

  • Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23: 5308–5318.

    PubMed  CAS  Google Scholar 

  • Li CR, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30: 593–607.

    Article  PubMed  CAS  Google Scholar 

  • Maschke M., Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91: 230–238.

    Article  PubMed  Google Scholar 

  • ∗Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Faccini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415: 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Padoa-Schioppa C, Li CR, Bizzi E (2002) Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron 36: 751–765.

    Article  PubMed  CAS  Google Scholar 

  • Padoa-Schioppa C, Li CR, Bizzi E (2004) Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamical environment. J Neurophysiol 91: 449–473.

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263: 1287–1289.

    Article  PubMed  CAS  Google Scholar 

  • Paz R, Natan C, Boraud T, Bergman H, and Vaadia E (2005) Emerging patterns of neuronal responses in supplementary and primary motor areas during sensorimotor adaptation. J Neurosci 25: 10941–10951.

    Article  PubMed  CAS  Google Scholar 

  • ∗Richardson AG, Overduin SA, Valero-Cabré A, Padoa-Schioppa C, Pascual-Leone A, Bizzi E, Press DZ (2006) Disruption of primary motor cortex prior to learning impairs memory of movement dynamics. J Neurosci 26: 12466–12470.

    Article  PubMed  CAS  Google Scholar 

  • ∗Robertson EM, Pascual-Leone A, Miall RC (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5: 1–7.

    Article  Google Scholar 

  • Robertson EM, Press DZ, Pascual-Leone A (2005) Off-line learning and the primary motor cortex. J Neurosci 25: 6372–6378.

    Article  PubMed  CAS  Google Scholar 

  • Robertson EM, Theoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15: 948–960.

    Article  PubMed  CAS  Google Scholar 

  • Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol. 113: 101–107.

    Article  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23: 393–415.

    Article  PubMed  CAS  Google Scholar 

  • ∗Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Moussavi ZMK (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20: 7807–7815.

    PubMed  CAS  Google Scholar 

  • ∗Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14: 3208–3224.

    PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93: 2809–2821.

    Article  PubMed  Google Scholar 

  • Thach WT (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol 41:654–676.

    PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19: 8573–8588.

    PubMed  CAS  Google Scholar 

  • Walker MP (2005) A refined model of sleep and the time course of memory formation. Behav Brain Sci 28: 51–104.

    PubMed  Google Scholar 

  • Xiao J, Padoa-Schioppa C, Bizzi E (2006) Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey. Exp Brain Res 168: 106–119.

    Article  PubMed  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Overduin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Overduin, S.A., Richardson, A.G., Bizzi, E. (2009). Cortical Processing during Dynamic Motor Adaptation. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_22

Download citation

Publish with us

Policies and ethics