Skip to main content

Regulators of Ca2+ Signaling in Mast Cells: Potential Targets for Treatment of Mast Cell-Related Diseases?

  • Chapter
Book cover Mast Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca2+ from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca2+, usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca2+-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or “punctae” in which STIM1 and channel proteins colocalize. The ensuing influx of Ca2+ replenishes Ca2+ stores and sustains elevated levels of cytosolic Ca2+ ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca2+ fluxes through ATP-dependent Ca2+-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ma HT, Beaven MA. Regulation of Ca2+ signaling with particular focus on mast cells. Crit Rev Immunol 2009; 29:155–186.

    PubMed  CAS  Google Scholar 

  2. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355:353–356.

    PubMed  CAS  Google Scholar 

  3. Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol (Lond) 1993; 465:359–386.

    CAS  Google Scholar 

  4. Hundley TR, Gilfillan AM, Tkaczyk C et al. Kit and FcεRI mediate unique and convergent signals forrelease of inflammatory mediators from human mast cells. Blood 2004; 104:2410–2417.

    PubMed  CAS  Google Scholar 

  5. Ali H, Cunha-Melo JR, Saul WF et al. The activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen stimulated RBL-2H3 cells: Evidence for a novel adenosine receptor. J Biol Chem 1990; 265:745–753.

    PubMed  CAS  Google Scholar 

  6. Feoktistov I, Biaggioni I. Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 1995; 96:1979–1986.

    PubMed  CAS  Google Scholar 

  7. Linden J, Thai T, Figler H et al. Characterization of human A2B adenosine receptors: radioligand binding, western blotting and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol 1999; 56:705–713.

    PubMed  CAS  Google Scholar 

  8. Nguyen M, Solle M, Audoly LP et al. Receptors and signaling mechanisms required for prostaglandin E2-mediated regulation of mast cell degranulation and IL-6 production. J Immunol 2002; 169:4586–4593.

    PubMed  CAS  Google Scholar 

  9. Kuehn HS, Beaven MA, Ma HT et al. Synergistic activation of phospholipases Cγ and Cβ: a novel mechanism for PI3K-independent enhancement of FcεRI-induced mast cell mediator release. Cell Signal 2008; 20:625–636.

    PubMed  CAS  Google Scholar 

  10. Ali H, Sozzani S, Fisher I et al. Differential regulation of formyl peptide and platelet-activating factor receptors. Role of phospholipase Cβ phosphorylation by protein kinase A. J Biol Chem 1998; 273:11012–11016.

    PubMed  CAS  Google Scholar 

  11. Hartmann K, Henz BM, Kruger-Krasagakes S et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood 1997; 89:2863–2870.

    PubMed  CAS  Google Scholar 

  12. Qiao H, Andrade MV, Lisboa FA et al. FcεRI and Toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 2006; 107:610–618.

    PubMed  CAS  Google Scholar 

  13. Beaven MA, Rogers J, Moore JP et al. The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J Biol Chem 1984; 259:7129–7136.

    PubMed  CAS  Google Scholar 

  14. Ozawa K, Szallasi Z, Kazanietz MG et al. Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells: Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J Biol Chem 1993; 268:1749–1756.

    PubMed  CAS  Google Scholar 

  15. Chang WC, Nelson C, Parekh AB. Ca2+ influx through CRAC channels activates cytosolic phospholipase A2, leukotriene C4 secretion and expression of c-fos through ERK-dependent and-independent pathways in mast cells. FASEB J 2006; 20:2381–2383.

    PubMed  CAS  Google Scholar 

  16. Liou J, Kim ML, Heo WD et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15:1235–1241.

    PubMed  CAS  Google Scholar 

  17. Roos J, DiGregorio PJ, Yeromin AV et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169:435–445.

    PubMed  CAS  Google Scholar 

  18. Feske S, Gwack Y, Prakriya M et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441:179–185.

    PubMed  CAS  Google Scholar 

  19. Vig M, Peinelt C, Beck A et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220–1223.

    PubMed  CAS  Google Scholar 

  20. Zhang SL, Yeromin AV, Zhang XH et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 2006; 103:9357–9362.

    PubMed  CAS  Google Scholar 

  21. Soboloff J, Spassova MA, Tang XD et al. Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 2006; 281:20661–20665.

    PubMed  CAS  Google Scholar 

  22. Mercer JC, Dehaven WI, Smyth JT et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006; 281:24979–2490.

    PubMed  CAS  Google Scholar 

  23. Peinelt C, Vig M, Koomoa DL et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006; 8:771–773.

    PubMed  CAS  Google Scholar 

  24. Lichtenstein LM, Osier AG. Studies on the mechanism of hypersensitiviy phenomena: IX. Histamine release from human leukocytes by ragweed pollen. J Exp Med 1964; 120:507–530.

    PubMed  CAS  Google Scholar 

  25. Greaves MW, Mongar JL. The mechanism of anaphylactic histamine release from rabbit leucocytes. Immunology 1968; 15:743–749.

    PubMed  CAS  Google Scholar 

  26. Foreman JC, Mongar JL. The role of the alkaline earth ions in anaphylactic histamine secretion. J Physiol (Lond) 1972; 224:753–769.

    CAS  Google Scholar 

  27. Riley JF. The Mast Cells. Edinburgh and London: E. and S. Livingstone; 1959.

    Google Scholar 

  28. Foreman JC, Hallett MB, Mongar JL. Movement of strontium ions into mast cells and its relationship to the secretory response. J Physiol (Lond) 1977; 271:233–251.

    CAS  Google Scholar 

  29. Foreman JC, Hallet MB, Mongar JL. The relationship between histamine secretion and 45calcium-uptake by mast cells. J Physiol 1977; 271:193–214.

    PubMed  CAS  Google Scholar 

  30. Foreman JC, Mongar JL. The action of lanthanum and manganese on anaphylactic histamine secretion. Br J Pharmacol 1973; 48:527–537.

    PubMed  CAS  Google Scholar 

  31. Pearce FL, White JR. Effect of lanthanide ions on histamine secretion from rat peritoneal mast cells. Br J Pharmacol 1981; 72:341–347.

    PubMed  CAS  Google Scholar 

  32. Mohr FC, Fewtrell C. Depolarization of rat basophilic leukemia cells inhibits calcium uptake and exocytosis. J Cell Biol 1987; 104:783–792.

    PubMed  CAS  Google Scholar 

  33. Millard PJ, Ryan TA, Webb WW et al. Immunoglobulin E receptor cross-linking induces oscillations in intracellular free ionized calcium in individual tumor mast cells. J Biol Chem 1989; 264:19730–19739.

    PubMed  CAS  Google Scholar 

  34. Jones SV, Choi OH, Beaven MA. Carbachol induces secretion in a mast cell line (RBL-2H3) transfected with the ml muscarinic receptor gene. FEBS Lett 1991; 289:47–50.

    PubMed  CAS  Google Scholar 

  35. Marcotte GV, Millard PJ, Fewtrell C. Release of calcium from intracellular stores in rat basophilic leukemia cells monitored with the fluorescent probe chlortetracycline. J Cell Physiol 1990; 142:78–88.

    PubMed  CAS  Google Scholar 

  36. Hide M, Beaven MA. Calcium influx in a rat mast cell (RBL-2H3) line: Use of multivalent metal ions to define its characteristics and role in exocytosis. J Biol Chem 1991; 266:15221–15229.

    PubMed  CAS  Google Scholar 

  37. Mohr FC, Fewtrell C. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells. Am J Physiol 1990; 258:C217-C226.

    Google Scholar 

  38. Ali H, Maeyama K, Sagi-Eisenberg R et al. Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores. Biochem J 1994; 304:431–440.

    PubMed  CAS  Google Scholar 

  39. Mohr FC, Fewtrell C. The relative contributions of extracellular and intracellular calcium to secretion from tumor mast cells. Multiple effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem 1987; 262:10638–10643.

    PubMed  CAS  Google Scholar 

  40. Streb H, Bayerd:orffer E, Haase W et al. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 1984; 81:241–253.

    PubMed  CAS  Google Scholar 

  41. Furuichi T, Yoshikawa S, Miyawaki A et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989; 342:32–38.

    PubMed  CAS  Google Scholar 

  42. Mignery GA, Newton CL, Archer BT III et al. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 1990; 265:12679–12685.

    PubMed  CAS  Google Scholar 

  43. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 1991; 266:17067–17071.

    PubMed  CAS  Google Scholar 

  44. Thastrup O, Cullen PJ, Drbak BK et al. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition ofthe endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 1990; 87:2466–2470.

    PubMed  CAS  Google Scholar 

  45. Takemura H, Hughes AR, Thastrup O et al. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 1989; 264:12266–12271.

    PubMed  CAS  Google Scholar 

  46. Jackson TR, Patterson SI, Thastrup O et al. A novel tumor promoter, thapsigargin, transiently increases cytoplasmic free Ca2+without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 1988; 253:81–86.

    PubMed  CAS  Google Scholar 

  47. Putney JW Jr. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 2007; 42:103–110.

    PubMed  CAS  Google Scholar 

  48. Falcone D, Fewtrell C. Ca2+-ATPase inhibitor, cyclopiazonic acid, releases Ca2+ from intracellular stores in RBL-2H3 mast cells and activates a Ca2+ influx pathway that is permeable to sodium and manganese. J Cell Physiol 1995; 164:205–213.

    PubMed  CAS  Google Scholar 

  49. Ma HT, Peng Z, Hiragun T et al. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+ and degranulation in a rat mast cell line. J Immunol 2008; 180:2233–2239.

    PubMed  CAS  Google Scholar 

  50. Cohen R, Torres A, Ma HT et al. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. J Immunol 2009; 183:6478–6488.

    PubMed  CAS  Google Scholar 

  51. Cheng KT, Liu X, Ong HL et al. Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 2008; 283:12935–12940.

    PubMed  CAS  Google Scholar 

  52. Liao Y, Erxleben C, Abramowitz J et al. Functional interactions among Orai1, TRPCs and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 2008; 105:2895–2900.

    PubMed  CAS  Google Scholar 

  53. Beaven MA, Moore JP, Smith GA et al. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J Biol Chem 1984; 259:7137–7142.

    PubMed  CAS  Google Scholar 

  54. Pribluda VS, Metzger H. Calcium-independent phosphoinositide breakdown in rat basophilic leukemia cells. Evidence for an early rise in inositol 1,4,5-trisphosphate which precedes the rise in other inositol phosphates and in cytoplasmic calcium. J Biol Chem 1987; 262:11449–11454.

    PubMed  CAS  Google Scholar 

  55. Park DJ, Min HK, Rhee SG. IgE-induced tyrosine phosphorylation of phospholipase C-γ1 in rat basophilic leukemia cells. J Biol Chem 1991; 266:24237–24240.

    PubMed  CAS  Google Scholar 

  56. Ali H, Fisher I, Haribabu B et al. Role of phospholipase Cβ phosphorylation in the desensitization of cellular responses to platelet-activating factor. J Biol Chem 1997; 272:11706–11709.

    PubMed  CAS  Google Scholar 

  57. Choi OH, Lee JH, Kassessinoff T et al. Carbachol and antigen mobilize calcium by similar mechanisms in a transfected mast cell line (RBL-2H3 cells) that expresses m1 muscarinic receptors. J Immunol 1993; 151:5586–5595.

    PubMed  CAS  Google Scholar 

  58. Mazel T, Raymond R, Raymond-Stintz M et al. Stochastic modeling of calcium in 3D geometry. Biophys J 2009; 96:1691–1706.

    PubMed  CAS  Google Scholar 

  59. Barker SA, Caldwell KK, Pfeiffer JR et al. Wortmannin-sensitive phosphorylation, translocation and activation of PLCγ1, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells. Mol Biol Cell 1998; 9:483–496.

    PubMed  CAS  Google Scholar 

  60. Saitoh S, Arudchandran R, Manetz TS et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity 2000; 12:525–535.

    PubMed  CAS  Google Scholar 

  61. Tkaczyk C, Beaven MA, Brachman SM et al. The phospholipase Cγ1dependent pathway of FcεRI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J Biol Chem 2003; 278:48474–48484.

    PubMed  CAS  Google Scholar 

  62. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 2006; 6:218–230.

    PubMed  CAS  Google Scholar 

  63. Parravinci V, Gadina M, Kovarova M et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 2002; 3:741–748.

    Google Scholar 

  64. Thompson HL, Marshall CJ, Saklatvala J. Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem 1994; 269:9486–9492.

    PubMed  CAS  Google Scholar 

  65. Kuehn HS, Gilfillan AM. G protein-coupled receptors and the modification of FcεRI-mediated mast cell activation. Immunol Lett 2007; 113:59–69.

    PubMed  CAS  Google Scholar 

  66. Thudichum JLW. A Treatise on the Chemical Constitution of the Brain. London: Baillière, Tindall and Cox; 1884.

    Google Scholar 

  67. Sourkes TL. The Life and Work of J. L. W. Thudichum, 1829–1901: “A Most Celebrated Exponent of the Art of Medicine and Chemistry”. Montreal: Osier Libray, McGill University; 2003.

    Google Scholar 

  68. Beaven MA. Division of labor: Specialization of sphingosine kinases in mast cells. Immunity 2007; 26:271–273.

    PubMed  CAS  Google Scholar 

  69. Meyer zu Heringdorf D. Lysophospholipid receptor-dependent and-independent calcium signaling. J Cell Biochem 2004; 92:937–948.

    Google Scholar 

  70. Choi OH, Kim JH, Kinet JP. Calcium mobilization via the sphingosine kinase in signalling by the FcεRI antigen receptor. Nature 1996; 380:634–636.

    PubMed  CAS  Google Scholar 

  71. Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277:17255–17262.

    PubMed  CAS  Google Scholar 

  72. Olivera A, Mizugishi K, Tikhonova A et al. The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 2007; 26:287–297.

    PubMed  CAS  Google Scholar 

  73. Mitra P, Oskeritzian CA, Payne SG et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sei USA 2006; 103:16394–16399.

    CAS  Google Scholar 

  74. Oskeritzian CA, Price MM, Hait NC et al. Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis and pulmonary edema. J Exp Med 2010; 207:465–474.

    PubMed  CAS  Google Scholar 

  75. Jolly PS, Bektas M, Olivera A et al. Transactivation of Sphingosine-1-Phosphate Receptors by FcεRI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis. J Exp Med 2004; 199:959–970.

    PubMed  CAS  Google Scholar 

  76. Olivera A, Urtz N, Mizugishi K et al. IgE-dependent activation of spingosine kinase 1 and 2 and secretion of sphingosine-1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 2006; 281:2515–2525.

    PubMed  CAS  Google Scholar 

  77. Ryu SD, Lee HS, Suk HY et al. Cross-linking of FcεRI causes Ca2+ mobilization via a sphingosine kinase pathway in a clathrin-dependent manner. Cell Calcium 2009; 45:99–108.

    PubMed  CAS  Google Scholar 

  78. Hait NC, Oskeritzian CA, Paugh SW et al. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 2006; 1758:2016–2026.

    PubMed  CAS  Google Scholar 

  79. Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8:753–763.

    PubMed  CAS  Google Scholar 

  80. Melendez AJ. Allergy therapy: the therapeutic potential of targeting sphingosine kinase signalling in mast cells. Eur J Immunol 2008; 38:2969–2974.

    PubMed  CAS  Google Scholar 

  81. Vermassen E, Parys JB, Mauger JP. Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 2004; 96:3–17.

    PubMed  CAS  Google Scholar 

  82. Michelangeli F, Ogunbayo OA, Wootton LL. A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 2005; 17:135–140.

    PubMed  CAS  Google Scholar 

  83. Devogelaere B, Verbert L, Parys JB et al. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor. Cell Calcium 2008; 43:17–27.

    PubMed  CAS  Google Scholar 

  84. Choe CU, Ehrlich BE. The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006; 2006:re15.

    Google Scholar 

  85. Patterson RL, Boehning D, Snyder SH. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 2004; 73:437–465.

    PubMed  CAS  Google Scholar 

  86. Vanlingen S, Parys JB, Missiaen L et al. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Cell Calcium 1997; 22:475–486.

    PubMed  CAS  Google Scholar 

  87. Wilson BS, Pfeiffer JR, Smith AJ et al. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell 1998; 9:1465–1478.

    PubMed  CAS  Google Scholar 

  88. Woodard GE, Lopez JJ, Jardin I et al. TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1 and Orai1. J Biol Chem 2010; 285:8045–8053.

    PubMed  CAS  Google Scholar 

  89. Mikoshiba K. The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp 2007:9–22.

    Google Scholar 

  90. Tu H, Wang Z, Bezprozvanny I. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 2005; 88:1056–1069.

    PubMed  CAS  Google Scholar 

  91. Vanderheyden V, Devogelaere B, Missiaen L et al. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 2009; 1793:959–970.

    PubMed  CAS  Google Scholar 

  92. Jayaraman T, Ondrias K, Ondriasova E et al. Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science 1996; 272:1492–1494.

    PubMed  CAS  Google Scholar 

  93. Yokoyama K, Su II, Tezuka T et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP3 receptor. EMBO J 2002; 21:83–92.

    PubMed  CAS  Google Scholar 

  94. Echevarria W, Leite MF, Guerra MT et al. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 2003; 5:440–446.

    PubMed  CAS  Google Scholar 

  95. Pinton P, Pozzan T, Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 1998; 17:5298–5308.

    PubMed  CAS  Google Scholar 

  96. Turner H, Fleig A, Stokes A et al. Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. Biochem J 2003; 371:341–350.

    PubMed  CAS  Google Scholar 

  97. Huang Y, Putney JW Jr. Relationship between intracellular calcium store depletion and calcium release-activated calcium current in a mast cell line (RBL-1). J Biol Chem 1998; 273:19554–19559.

    PubMed  CAS  Google Scholar 

  98. Castro J, Aromataris EC, Rychkov GY et al. A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid. Biochem J 2009; 418:553–566.

    PubMed  CAS  Google Scholar 

  99. Ong HL, Liu X, Tsaneva-Atanasova K et al. Relocalization of STIM1 for activation of store-operated Ca2+ entry is determined by the depletion of subplasma membrane endoplasmic reticulum Ca2+ store. J Biol Chem 2007; 282:12176–12185.

    PubMed  CAS  Google Scholar 

  100. Bola B, Allan V. How and why does the endoplasmic reticulum move? Biochem Soc Trans 2009; 37:961–965.

    PubMed  CAS  Google Scholar 

  101. Smyth JT, Dehaven WI, Bird GS et al. Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 2007; 120:3762–3771.

    PubMed  CAS  Google Scholar 

  102. Wu S, Chen H, Alexeyev MF et al. Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J Biol Chem 2007; 282:34801–34808.

    PubMed  CAS  Google Scholar 

  103. Means S, Smith AJ, Shepherd J et al. Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J 2006; 91:537–557.

    PubMed  CAS  Google Scholar 

  104. Wuytack F, Papp B, Verboomen H et al. A sarco/endoplasmic reticulum Ca2+-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells and in mast cells. J Biol Chem 1994; 269:1410–1416.

    PubMed  CAS  Google Scholar 

  105. Jousset H, Frieden M, Demaurex N. STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J Biol Chem 2007; 282:11456–11464.

    PubMed  CAS  Google Scholar 

  106. Camacho P, Lechleiter JD. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium-ATPase. Science 1993; 260:226–229.

    PubMed  CAS  Google Scholar 

  107. Yu R, Hinkle PM. Rapid turnover of calcium in the endoplasmic reticulum during signaling. Studies with cameleon calcium indicators. J Biol Chem 2000; 275:23648–23653.

    PubMed  CAS  Google Scholar 

  108. Roderick HL, Lechleiter JD, Camacho P. Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J Cell Biol 2000; 149:1235–1248.

    PubMed  CAS  Google Scholar 

  109. Lopéz JJ, Jardin I, Bobe R et al. STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochem Pharmacol 2008; 75:2157–2164.

    PubMed  Google Scholar 

  110. Vaca L. SOCIC: The store-operated calcium influx complex. Cell Calcium 2010; in press.

    Google Scholar 

  111. Green KN, Demuro A, Akbari Y et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid β production. J Cell Biol 2008; 181:1107–1116.

    PubMed  CAS  Google Scholar 

  112. Li Y, Camacho P. Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 2004; 164:35–46.

    PubMed  CAS  Google Scholar 

  113. Olson FJ, Ludowyke RI, Karlsson NG. Discovery and identification of serine and threonine phosphorylated proteins in activated mast cells: implications for regulation of protein synthesis in the rat basophilic leukemia mast cell line RBL-2H3. J Proteome Res 2009; 8:3068–3077.

    PubMed  CAS  Google Scholar 

  114. Tu H, Nelson O, Bezprozvanny A et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006; 126:981–993.

    PubMed  CAS  Google Scholar 

  115. Nelson O, Tu H, Lei T et al. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 2007; 117:1230–1239.

    PubMed  CAS  Google Scholar 

  116. Ong HL, Liu X, Sharma A et al. Intracellular Ca2+ release via the ER translocon activates store-operated calcium entry. Pflugers Arch 2007; 453:797–808.

    PubMed  CAS  Google Scholar 

  117. Van Coppenolle F, Vanden Abeele F, Slomianny C et al. Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 2004; 117:4135–4142.

    PubMed  Google Scholar 

  118. Amer MS, Li J, O’Regan DJ et al. Translocon closure to Ca2+ leak in proliferating vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2009; 296:H910-H916.

    Google Scholar 

  119. Vanden Abeele F, Bidaux G, Gordienko D et al. Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 2006; 174:535–546.

    Google Scholar 

  120. Szewczyk MM, Pande J, Grover AK. Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch-Eur J Physiol 2008; 456:255–266.

    CAS  Google Scholar 

  121. Cheung KH, Shineman D, Muller M et al. Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871–883.

    PubMed  CAS  Google Scholar 

  122. Yoo AS, Cheng I, Chung S et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27:561–572.

    PubMed  CAS  Google Scholar 

  123. Savineau JP. Is the translocon a crucial player of the calcium homeostasis in vascular smooth muscle cell? Am J Physiol Heart Circ Physiol 2009; 296:H906–H907.

    PubMed  CAS  Google Scholar 

  124. Flourakis M, Van Coppenolle F, Lehen’kyi V et al. Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 2006; 20:1215–1217.

    PubMed  CAS  Google Scholar 

  125. Wonderlin WF. Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulum. Pflugers Arch 2009; 457:917–930.

    PubMed  CAS  Google Scholar 

  126. Beecroft MD, Taylor CW. Luminal Ca2+ regulates passive Ca2+ efflux from the intracellular stores of hepatocytes. Biochem J 1998; 334( Pt 2):431–435.

    PubMed  CAS  Google Scholar 

  127. Baba Y, Nishida K, Fujii Y et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 2008; 9:81–88.

    PubMed  CAS  Google Scholar 

  128. Vig M, Dehaven WI, Bird GS et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 2008; 9:89–96.

    PubMed  CAS  Google Scholar 

  129. Brandman O, Liou J, Park WS et al. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007; 131:1327–1339.

    PubMed  CAS  Google Scholar 

  130. Stathopulos PB, Li GY, Plevin MJ et al. Stored Ca2+ depletion-induced oligomerization of STIM1 via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J Biol Chem 2006; 281:35855–35862.

    PubMed  CAS  Google Scholar 

  131. Zheng L, Stathopulos PB, Li GY et al. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 2008; 369:240–246.

    PubMed  CAS  Google Scholar 

  132. Zhang SL, Yu Y, Roos J et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437:902–905.

    PubMed  CAS  Google Scholar 

  133. Luik RM, Wu MM, Buchanan J et al. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 2006; 174:815–825.

    PubMed  CAS  Google Scholar 

  134. Calloway N, Vig M, Kinet JP et al. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 2008; 20:389–399.

    PubMed  Google Scholar 

  135. Muik M, Fahrner M, Derler I et al. A cytosolic homomerization and a modulatory domain within STIM1 C-terminus determine coupling to ORAI1 channels. J Biol Chem 2009; 284:8421–8426.

    PubMed  CAS  Google Scholar 

  136. Calloway N, Holowka D, Baird B. A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 2010; 49:1067–1071.

    PubMed  CAS  Google Scholar 

  137. Li Z, Lu J, Xu P et al. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 2007; 282:29448–29456.

    PubMed  CAS  Google Scholar 

  138. Park CY, Hoover PJ, Mullins FM et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009; 136:876–890.

    PubMed  CAS  Google Scholar 

  139. Muik M, Frischauf I, Derler I et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 2008; 283:8014–8022.

    PubMed  CAS  Google Scholar 

  140. Mathes C, Fleig A, Penner R. Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine. J Biol Chem 1998; 273:25020–25030.

    PubMed  CAS  Google Scholar 

  141. Yuan JP, Zeng W, Huang GN et al. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 2007; 9:636–645.

    PubMed  CAS  Google Scholar 

  142. Zeng W, Yuan JP, Kim MS et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 2008; 32:439–448.

    PubMed  CAS  Google Scholar 

  143. Stathopulos PB, Zheng L, Ikura M. Stromal Interaction Molecule (STIM) 1 and STIM2 Calcium Sensing Regions Exhibit Distinct Unfolding and Oligomerization Kinetics. J Biol Chem 2009; 284:728–732.

    PubMed  CAS  Google Scholar 

  144. Oh-Hora M, Yamashita M, Hogan PG et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T-cell activation and tolerance. Nat Immunol 2008; 9:432–443.

    PubMed  CAS  Google Scholar 

  145. Parvez S, Beck A, Peinelt C et al. STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 2008; 22:752–761.

    PubMed  CAS  Google Scholar 

  146. Nilius B, Owsianik G, Voets T et al. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165–217.

    PubMed  CAS  Google Scholar 

  147. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85:757–810.

    PubMed  CAS  Google Scholar 

  148. Putney JW, Bird GS. Cytoplasmic calcium oscillations and store-operated calcium influx. J Physiol 2008; 586:3055–3059.

    PubMed  CAS  Google Scholar 

  149. Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch 2007; 455:187–200.

    PubMed  CAS  Google Scholar 

  150. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW, Jr. The mammalian TRPC cation channels. Biochim Biophys Acta 2004; 1742:21–36.

    PubMed  CAS  Google Scholar 

  151. Kiselyov K, Kim JY, Zeng W et al. Protein-protein interaction and function: TRPC channels. Pflugers Arch 2005; 451:116–124.

    PubMed  CAS  Google Scholar 

  152. Putney JW Jr. Inositol lipids and TRPC channel activation. Biochem Soc Symp 2007:37–45.

    Google Scholar 

  153. Cahalan MD, Zhang SL, Yeromin AV et al. Molecular basis of the CRAC channel. Cell Calcium 2007; 42:133–144.

    PubMed  CAS  Google Scholar 

  154. Mignen O, Thompson JL, Shuttleworth TJ. Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 2008; 586:419–425.

    PubMed  CAS  Google Scholar 

  155. Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y et al. Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 2008; 105:13668–13673.

    PubMed  CAS  Google Scholar 

  156. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A et al. CRACM1, CRACM2 and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 2007; 17:794–800.

    PubMed  CAS  Google Scholar 

  157. Scharenberg AM, Humphries LA, Rawlings DJ. Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 2007; 7:778–789.

    PubMed  CAS  Google Scholar 

  158. Clapham DE. Calcium signaling. Cell 2007; 131:1047–1058.

    PubMed  CAS  Google Scholar 

  159. Frischauf I, Schindl R, Derler I et al. The STIM/Orai coupling machinery. Channels (Austin ) 2008; 2:261–268.

    Google Scholar 

  160. Potier M, Trebak M. New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 2008; 457:405–415.

    PubMed  CAS  Google Scholar 

  161. Luik RM, Lewis RS. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T-cells. Trends Mol Med 2007; 13:103–107.

    PubMed  CAS  Google Scholar 

  162. Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 2007; 7:690–702.

    PubMed  CAS  Google Scholar 

  163. Oh-Hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol 2008; 20:250–258.

    PubMed  CAS  Google Scholar 

  164. Vig M, Kinet JP. Calcium signaling in immune cells. Nature Immunol 2009; 10:21–27.

    CAS  Google Scholar 

  165. Fasolato C, Hoth M, Matthews G et al. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci USA 1993; 90:3068–3072.

    PubMed  CAS  Google Scholar 

  166. Braun FJ, Broad LM, Armstrong DL et al. Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions. J Biol Chem 2001; 12; 276:1063–1070.

    PubMed  CAS  Google Scholar 

  167. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 2007; 282:9105–9116.

    PubMed  CAS  Google Scholar 

  168. Liao Y, Erxleben C, Yildirim E et al. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 2007; 104:4682–4687.

    PubMed  CAS  Google Scholar 

  169. Jardin I, Lopez JJ, Salido GM et al. Orai1 mediates the interaction between STIM1 and hTRPCl and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 2008; 283:25296–25304.

    PubMed  CAS  Google Scholar 

  170. Mohr FC, Fewtrell C. IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol. J Immunol 1987; 138:1564–1570.

    PubMed  CAS  Google Scholar 

  171. Wischmeyer E, Lentes KU, Karschin A. Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line. Pflugers Arch 1995; 429:809–819.

    PubMed  CAS  Google Scholar 

  172. Bradding P. Mast cell ion channels. Chem Immunol Allergy 2005; 87:163–178.

    PubMed  CAS  Google Scholar 

  173. Narenjkar J, Assem SK, Ganellin CR. Inhibition of the antigen-induced activation of RBL-2H3 cells by cetiedil and some of its analogues. Eur J Pharmacol 2004; 483:107–116.

    PubMed  CAS  Google Scholar 

  174. Duffy SM, Berger P, Cruse G et al. The K+ channel iKCA1 potentiates Ca2+ influx and degranulation in human lung mast cells. J Allergy Clin Immunol 2004; 114:66–72.

    CAS  Google Scholar 

  175. Cruse G, Duffy SM, Brightling CE et al. Functional KCA3.1 K+ channels are required for human lung mast cell migration. Thorax 2006; 61:880–885.

    PubMed  CAS  Google Scholar 

  176. Harteneck C. Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:307–314.

    PubMed  CAS  Google Scholar 

  177. Launay P, Fleig A, Perraud AL et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 2002; 109:397–407.

    PubMed  CAS  Google Scholar 

  178. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 2007; 8:312–320.

    PubMed  CAS  Google Scholar 

  179. Shimizu T, Owsianik G, Freichel M et al. TRPM4 regulates migration of mast cells in mice. Cell Calcium 2009; 45:226–232.

    PubMed  CAS  Google Scholar 

  180. Takezawa R, Cheng H, Beck A et al. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 2006; 69:1413–1420.

    PubMed  CAS  Google Scholar 

  181. Strehler EE, Treiman M. Calcium pumps of plasma membrane and cell interior. Curr Mol Med 2004; 4:323–335.

    PubMed  CAS  Google Scholar 

  182. Brini M. Plasma membrane Ca2+-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch 2009; 457:657–664.

    PubMed  CAS  Google Scholar 

  183. Obara K, Miyashita N, Xu C et al. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc Natl Acad Sci USA 2005; 102:14489–14496.

    PubMed  CAS  Google Scholar 

  184. Di Leva F, Domi T, Fedrizzi L et al. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 2008; 476:65–74.

    PubMed  Google Scholar 

  185. Bautista DM, Hoth M, Lewis RS. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T-cells. J Physiol 2002; 541:877–894.

    PubMed  CAS  Google Scholar 

  186. Belan PV, Gerasimenko OV, Tepikin AV et al. Localization of Ca2+ extrusion sites in pancreatic acinar cells. J Biol Chem 1996; 271:7615–7619.

    PubMed  CAS  Google Scholar 

  187. Lee MG, Xu X, Zeng W et al. Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 1997; 272:15771–15776.

    PubMed  CAS  Google Scholar 

  188. Jayapal M, Tay HK, Reghunathan R et al. Genome-wide gene expression profiling of human mast cells stimulated by IgE or FcεRI-aggregation reveals a complex network of genes involved in inflammatory responses. BMC Genomics 2006; 7:210–227.

    PubMed  Google Scholar 

  189. Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 2007; 406:365–382.

    PubMed  CAS  Google Scholar 

  190. Alfonso A, Lago J, Botana MA et al. Characterization of the Na+/Ca2+ exchanger on rat mast cells. Evidence for a functional role on the regulation of the cellular response. Cell Physiol Biochem 1999; 9:53–71.

    PubMed  CAS  Google Scholar 

  191. Rumpel E, Pilatus U, Mayer A et al. Na+-dependent Ca2+ transport modulates the secretory response to the Fcε receptor stimulus of mast cells. Biophys J 2000; 79:2975–2986.

    PubMed  CAS  Google Scholar 

  192. Aneiros E, Philipp S, Lis A et al. Modulation of Ca2+ signaling by Na+/Ca2+ exchangers in mast cells. J Immunol 2005; 174:119–130.

    PubMed  CAS  Google Scholar 

  193. Romagnoli A, Aguiari P, De SD et al. Endoplasmic reticulum/mitochondria calcium cross-talk. Novartis Found Symp 2007; 287:122–131.

    PubMed  CAS  Google Scholar 

  194. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 2010;doi:10.1016/j.bbabio.2010.01.005.

    Google Scholar 

  195. Pacher P, Csordás P, Schneider T et al. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria. J Physiol 2000; 529 Pt 3:553–564.

    PubMed  CAS  Google Scholar 

  196. Csordás G, Hajnóczky G. Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 2001; 29:249–262.

    PubMed  Google Scholar 

  197. Csordás G, Hajnóczky G. Plasticity of mitochondrial calcium signaling. J Biol Chem 2003; 278:42273–42282.

    PubMed  Google Scholar 

  198. Hoth M, Button DC, Lewis RS. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T-lymphocytes. Proc Natl Acad Sci USA 2000; 97:10607–10612.

    PubMed  CAS  Google Scholar 

  199. Glitsch MD, Bakowski D, Parekh AB. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 2002; 21:6744–6754.

    PubMed  CAS  Google Scholar 

  200. Park MK, Ashby MC, Erdemli G et al. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 2001; 20:1863–1874.

    PubMed  CAS  Google Scholar 

  201. Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427:360–364.

    PubMed  CAS  Google Scholar 

  202. Jiang D, Zhao L, Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 2009; 326:144–147.

    PubMed  CAS  Google Scholar 

  203. Dolman NJ, Tepikin AV. Calcium gradients and the Golgi. Cell Calcium 2006; 40:505–512.

    PubMed  CAS  Google Scholar 

  204. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium 2005; 38:311–317.

    PubMed  CAS  Google Scholar 

  205. Nicholls DG. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 1978; 176:463–474.

    PubMed  CAS  Google Scholar 

  206. Visch HJ, Rutter GA, Koopman WJ et al. Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 2004; 279:40328–40336.

    PubMed  CAS  Google Scholar 

  207. Tovey SC, de SP, Lipp P et al. Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 2001; 114:3979–3989.

    PubMed  CAS  Google Scholar 

  208. Berridge MJ. Calcium microdomains: organization and function. Cell Calcium 2006; 40:405–412.

    PubMed  CAS  Google Scholar 

  209. Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol 2008; 9:1215–1223.

    PubMed  CAS  Google Scholar 

  210. Beaven MA. Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 2009; 39:11–25.

    PubMed  CAS  Google Scholar 

  211. Hirasawa N, Santini F, Beaven MA. Activation of the mitogen-activated protein kinase/cytosolic phospholipase A2 pathway in a rat mast cell line. Indications of different pathways for release of arachidonic acid and secretory granules. J Immunol 1995; 154:5391–5402.

    PubMed  CAS  Google Scholar 

  212. Wodnar-Filipowicz A, Moroni C. Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions. Proc Natl Acad Sci USA 1990; 87:777–781.

    PubMed  CAS  Google Scholar 

  213. Plaut M, Pierce JH, Watson CJ et al. Mast cell lines produce lymphokines in response to cross-linkage of FcεRI or to calcium ionophores. Nature 1989; 339:64–67.

    PubMed  CAS  Google Scholar 

  214. Burd PR, Rogers HW, Gordon JR et al. Interleukin 3-dependent and-independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med 1989; 170:245–257.

    PubMed  CAS  Google Scholar 

  215. Thompson HL, Burbelo PD, Yamada Y et al. Mast cells chemotax to laminin with enhancement after IgE-mediated activation. J Immunol 1989; 143:4188–4192.

    PubMed  CAS  Google Scholar 

  216. Hofstra CL, Desai PJ, Thurmond RL et al. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 2003; 305:1212–1221.

    PubMed  CAS  Google Scholar 

  217. Benyon RC, Robinson C, Church MK. Differential release of histamine and eicosanoids from human skin mast cells activated by IgE-dependent and non-immunological stimuli. Brit J Pharmacol 1989; 97:898–904.

    CAS  Google Scholar 

  218. van Haaster CM, Engels W, Lemmens PJ et al. Differential release of histamine and prostaglandin D2 in rat peritoneal mast cells: roles of cytosolic calcium and protein tyrosine kinases. Biochim Biophys Acta 1995; 1265:79–88.

    PubMed  Google Scholar 

  219. Kim TD, Eddlestone GT, Mahmoud SF et al. Correlating Ca2+ responses and secretion in individual RBL-2H3 mucosal mast cells. J Biol Chem 1997; 272:31225–31229.

    PubMed  CAS  Google Scholar 

  220. Chang WC, Di CJ, Nelson C et al. All-or-none activation of CRAC channels by agonist elicits graded responses in populations of mast cells. J Immunol 2007; 179:5255–5263.

    PubMed  CAS  Google Scholar 

  221. Ramkumar V, Stiles GL, Beaven MA et al. The A3R is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 1993; 268:16887–16890.

    PubMed  CAS  Google Scholar 

  222. Sweeney ZK, Minatti A, Button DC et al. Small-molecule inhibitors of store-operated calcium entry. ChemMedChem 2009; 4:706–718.

    PubMed  CAS  Google Scholar 

  223. Sureshan KM, Trusselle M, Tovey SC et al. 2-Position base-modified analogues of adenophostin A as high-affinity agonists of the D-myo-inositol trisphosphate receptor: in vitro evaluation and molecular modeling. J Org Chem 2008; 73:1682–1692.

    PubMed  CAS  Google Scholar 

  224. Takahashi M, Tanzawa K, Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 1994; 269:369–372.

    PubMed  CAS  Google Scholar 

  225. Hirota J, Michikawa T, Miyawaki A et al. Adenophostin-mediated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett 1995; 368:248–252.

    PubMed  CAS  Google Scholar 

  226. Huang Y, Takahashi M, Tanzawa K et al. Effect of adenophostin Aon Ca2+ entry and calcium release-activated calcium current (Icrac) in rat basophilic leukemia cells. J Biol Chem 1998; 273:31815–31821.

    PubMed  CAS  Google Scholar 

  227. Bird GS, Takahashi M, Tanzawa K et al. Adenophostin A induces spatially restricted calcium signaling in Xenopus laevis oocytes. J Biol Chem 1999; 274:20643–20649.

    PubMed  CAS  Google Scholar 

  228. Gafni J, Munsch JA, Lam TH et al. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 1997; 19:723–733.

    PubMed  CAS  Google Scholar 

  229. Castonguay A, Robitaille R. Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium 2002; 32:39–47.

    PubMed  CAS  Google Scholar 

  230. Solovyova N, Fernyhough P, Glazner G et al. Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca2+ release in cultured dorsal root ganglia neurones. Cell Calcium 2002; 32:49–52.

    PubMed  CAS  Google Scholar 

  231. Oka T, Sato K, Hori M et al. Xestospongin C, a novel blocker of IP3 receptor, attenuates the increase in cytosolic calcium level and degranulation that is induced by antigen in RBL-2H3 mast cells. Br J Pharmacol 2002; 135:1959–1966.

    PubMed  CAS  Google Scholar 

  232. Rasmussen U, Broogger CS, Sandberg F. Thapsigargin and thapsigargicin, two new histamine liberators from Thapsia garganica L. Acta Pharm Suec 1978; 15:133–140.

    PubMed  CAS  Google Scholar 

  233. Patkar SA, Rasmussen U, Diamant B. On the mechanism of histamine release induced by thapsigargin from Thapsia garganica L. Agents Actions 1979; 9:53–57.

    PubMed  CAS  Google Scholar 

  234. Ali H, Christensen SB, Foreman JC et al. The ability of thapsigargin and thapsigargicin to activate cells involved in the inflammatory response. Br J Pharmacol 1985; 85:705–712.

    PubMed  CAS  Google Scholar 

  235. Xu C, Ma H, Inesi G. Specific structural requirements for the inhibitory effect of thapsigargin on the Ca2+ ATPase SERCA. J Biol Chem 2004; 279:17973–17979.

    PubMed  CAS  Google Scholar 

  236. Wootton LL, Michelangeli F. The effects of the phenylalanine 256 to valine mutation on the sensitivity of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) Ca2+ pump isoforms 1,2 and 3 to thapsigargin and other inhibitors. J Biol Chem 2006; 281:6970–6976.

    PubMed  CAS  Google Scholar 

  237. Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 1991; 266:13503–13506.

    PubMed  CAS  Google Scholar 

  238. Oka T, Hori M, Ozaki H. Microtubule disruption suppresses allergic response through the inhibition of calcium influx in the mast cell degranulation pathway. J Immunol 2005; 174:4584–4589.

    PubMed  CAS  Google Scholar 

  239. Ma HT, Patterson RL, van Rossum DB et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 2000; 287:1647–1651.

    PubMed  CAS  Google Scholar 

  240. Bootman MD, Collins TJ, Mackenzie L et al. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 2002; 16:1145–1150.

    PubMed  CAS  Google Scholar 

  241. Prakriya M, Lewis RS. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 2001; 536:3–19.

    PubMed  CAS  Google Scholar 

  242. Zhang SL,Kozak JA, Jiang W et al. Store-dependent and-independent modes regulating Ca2+release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 2008; 283:17662–17671.

    PubMed  CAS  Google Scholar 

  243. Peinelt C, Lis A, Beck A et al. 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 2008; 586:3061–3073.

    PubMed  CAS  Google Scholar 

  244. Dehaven WI, Smyth JT, Boyles RR et al. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 2008; 283:19265–19273.

    PubMed  CAS  Google Scholar 

  245. Schindl R, Bergsmann J, Frischauf I et al. 2-Aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 2008; 283:20261–20267.

    PubMed  CAS  Google Scholar 

  246. Aksoy E, Goldman M, Willems F. Protein kinase C epsilon: a new target to control inflammation and immune-mediated disorders. Int J Biochem Cell Biol 2004; 36:183–188.

    PubMed  CAS  Google Scholar 

  247. Ishikawa J, Ohga K, Yoshino T et al. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T-lymphocytes. J Immunol 2003; 170:4441–4449.

    PubMed  CAS  Google Scholar 

  248. He LP, Hewavitharana T, Soboloff J et al. A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 2005; 280:10997–1006.

    PubMed  CAS  Google Scholar 

  249. Yoshino T, Ishikawa J, Ohga K et al. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. Eur J Pharmacol 2007; 560:225–233.

    PubMed  CAS  Google Scholar 

  250. Ohga K, Takezawa R, Yoshino T et al. The suppressive effects of YM-58483/BTP-2, a store-operated Ca2+ entry blocker, on inflammatory mediator release in vitro and airway responses in vivo. Pulm Pharmacol Ther 2008; 21:360–369.

    PubMed  CAS  Google Scholar 

  251. de Lumley M, Hart DJ, Cooper MA et al. A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-κB and NFAT families. J Mol Biol 2004; 339:1059–1075.

    PubMed  Google Scholar 

  252. Dunlop J, Bowlby M, Peri R et al. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 2008; 7:358–368.

    PubMed  CAS  Google Scholar 

  253. Feske S, Prakriya M, Rao A et al. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T-cells from immunodeficient patients. J Exp Med 2005; 202:651–662.

    PubMed  CAS  Google Scholar 

  254. Picard C, McCarl CA, Papolos A et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009; 360:1971–1980.

    PubMed  CAS  Google Scholar 

  255. Sakuntabhai A, Ruiz-Perez V, Carter S et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 1999; 21:271–277.

    PubMed  CAS  Google Scholar 

  256. Kruse M, Schulze-Bahr E, Corfield V et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 2009; 119:2737–2744.

    PubMed  CAS  Google Scholar 

  257. Reiser J, Polu KR, Moller CC et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005; 37:739–744.

    PubMed  CAS  Google Scholar 

  258. Winn MP, Conlon PJ, Lynn KL et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; 308:1801–1804.

    PubMed  CAS  Google Scholar 

  259. Abramowitz J, Birnbaumer L. Know thy neighbor: a survey of diseases and complex syndromes that map to chromosomal regions encoding TRP channels. Handb Exp Pharmacol 2007:379–408.

    Google Scholar 

  260. Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 2009; 23:297–328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ma, HT., Beaven, M.A. (2011). Regulators of Ca2+ Signaling in Mast Cells: Potential Targets for Treatment of Mast Cell-Related Diseases?. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_5

Download citation

Publish with us

Policies and ethics