Skip to main content

Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin

  • Chapter
  • First Online:
Book cover Cell Adhesion Molecules

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 8))

Abstract

The neuronal cell adhesion molecule neurofascin is expressed in highly complex temporally and spatially regulated patterns. Accordingly, many different functions have been described including control of neurite outgrowth, clustering of protein complexes at the axon initial segments as well as at the nodes of Ranvier and axoglial contact formation at paranodal segments. At the molecular level, neurofascin provides a link between extracellular interactions of many different interaction partners and cytoskeletal components or signal transduction. Such interactions are subject to intimate regulation by alternative splicing and posttranslational modification. The versatile functional aspects of neurofascin interactions pose it at a central position for the shaping and maintenance of neural circuitry and synaptic contacts which are implicated in nervous system disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arroyo EJ, Xu T, Grinspan J, Lambert S, Levinson SR, Brophy PJ, Peles E, Scherer SS (2002) Genetic dysmyelination alters the molecular architecture of the nodal region. J Neurosci 22(5):1726–1737

    CAS  PubMed  Google Scholar 

  • Basak S, Raju K, Babiarz J, Kane-Goldsmith N, Koticha D, Grumet M (2007) Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development. Dev Biol 311(2):408–422. doi:10.1016/j.ydbio.2007.08.045, S0012-1606(07)01306-1[pii]

    Article  CAS  PubMed  Google Scholar 

  • Bennett V, Healy J (2009) Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol 1(6):a003012. doi:10.1101/cshperspect.a003012, cshperspect.a003012 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30(2):369–383, S0896-6273(01)00294-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30(2):385–397, S0896-6273(01)00296-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Brose N, O'Connor V, Skehel P (2010) Synaptopathy: dysfunction of synaptic function? Biochem Soc Trans 38(2):443–444

    Article  CAS  PubMed  Google Scholar 

  • Bruckner G, Szeoke S, Pavlica S, Grosche J, Kacza J (2006) Axon initial segment ensheathed by extracellular matrix in perineuronal nets. Neuroscience 138(2):365–375. doi:10.1016/j.neuroscience.2005.11.068, S0306-4522(05)01346-1. [pii]

    Article  CAS  PubMed  Google Scholar 

  • Burkarth N, Kriebel M, Kranz EU, Volkmer H (2007) Neurofascin regulates the formation of gephyrin clusters and their subsequent translocation to the axon hillock of hippocampal neurons. Mol Cell Neurosci 36(1):59–70. doi:10.1016/j.mcn.2007.06.001, S1044-7431(07)00132-7. [pii]

    Article  CAS  PubMed  Google Scholar 

  • Buttermore ED, Piochon C, Wallace ML, Philpot BD, Hansel C, Bhat MA (2012) Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci 32(14):4724–4742. doi:10.1523/JNEUROSCI.5602-11.2012, 32/14/4724 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409. doi:10.1124/pr.57.4.4, 57/4/397 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Charles P, Tait S, Faivre-Sarrailh C, Barbin G, Gunn-Moore F, Denisenko-Nehrbass N, Guennoc AM, Girault JA, Brophy PJ, Lubetzki C (2002) Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol 12(3):217–220

    Article  CAS  PubMed  Google Scholar 

  • Collinson JM, Marshall D, Gillespie CS, Brophy PJ (1998) Transient expression of neurofascin by oligodendrocytes at the onset of myelinogenesis: implications for mechanisms of axon-glial interaction. Glia 23(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Cruz DA, Weaver CL, Lovallo EM, Melchitzky DS, Lewis DA (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology 34(9):2112–2124. doi:10.1038/npp.2009.36, npp200936 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem 269(44):27163–27166

    CAS  PubMed  Google Scholar 

  • Davis JQ, McLaughlin T, Bennett V (1993) Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. J Cell Biol 121(1):121–133

    Article  CAS  PubMed  Google Scholar 

  • Davis JQ, Lambert S, Bennett V (1996) Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J Cell Biol 135(5):1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR Jr, Peles E (2005) Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47(2):215–229. doi:10.1016/j.neuron.2005.06.026, doi:S0896-6273(05)00532-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, Dupree JL, Grumet M, Brophy PJ, Shrager P, Peles E (2010) A glial signal consisting of gliomedin and NrCAM clusters axonal Na + channels during the formation of nodes of Ranvier. Neuron 65(4):490–502. doi:10.1016/j.neuron.2010.02.004, S0896-6273(10)00095-4 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31(5):257–264. doi:10.1016/j.tins.2008.02.006, S0166-2236(08)00093-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, Fache MP, Debanne D, Dargent B (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300(5628):2091–2094. doi:10.1126/science.1085167300/5628/2091 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Garver TD, Ren Q, Tuvia S, Bennett V (1997) Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J Cell Biol 137(3):703–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gasser A, Ho TS, Cheng X, Chang KJ, Waxman SG, Rasband MN, Dib-Hajj SD (2012) An AnkyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of ranvier. J Neurosci 32(21):7232–7243. doi:10.1523/JNEUROSCI.5434-11.2012, 32/21/7232 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gollan L, Salomon D, Salzer JL, Peles E (2003) Caspr regulates the processing of contactin and inhibits its binding to neurofascin. J Cell Biol 163(6):1213–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grumet M (1997) Nr-CAM: a cell adhesion molecule with ligand and receptor functions. Cell Tissue Res 290(2):423–428

    Article  CAS  PubMed  Google Scholar 

  • Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):R29–35. doi:10.1016/j.cub.2006.11.042, S0960-9822(06)02523-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH, Lingenfelter SE, Pearce BR, Lundgren J, Owen MJ, Smart TG, Luscher B, Rees MI, Harvey RJ (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24(25):5816–5826

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Rathjen FG, Volkmer H (1997) Organization of the neurofascin gene and analysis of developmentally regulated alternative splicing. J Biol Chem 272(45):28742–28749

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom KL, Rasband MN (2006) Intrinsic and extrinsic determinants of ion channel localization in neurons. J Neurochem 98(5):1345–1352. doi:10.1111/j.1471-4159.2006.04001.x, JNC4001 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom KL, Xu X, Ogawa Y, Frischknecht R, Seidenbecher CI, Shrager P, Rasband MN (2007) Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J Cell Biol 178(5):875–886. doi:10.1083/jcb.200705119, jcb.200705119 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohlfeld R, Meinl E, Dornmair K (2008) B- and T-cell responses in multiple sclerosis: novel approaches offer new insights. J Neurol Sci 274(1–2):5–8. doi:10.1016/j.jns.2008.07.006, S0022-510X(08)00332-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Howell OW, Palser A, Polito A, Melrose S, Zonta B, Scheiermann C, Vora AJ, Brophy PJ, Reynolds R (2006) Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129(Pt 12):3173–3185. doi:10.1093/brain/awl290, awl290 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Insel TR (2009) Disruptive insights in psychiatry: transforming a clinical discipline. J Clin Invest 119(4):700–705. doi:10.1172/JCI38832, 38832 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwakura A, Uchigashima M, Miyazaki T, Yamasaki M, Watanabe M (2012) Lack of molecular-anatomical evidence for GABAergic influence on axon initial segment of cerebellar Purkinje cells by the pinceau formation. J Neurosci 32(27):9438–9448. doi:10.1523/jneurosci.1651-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Jacob TC, Bogdanov YD, Magnus C, Saliba RS, Kittler JT, Haydon PG, Moss SJ (2005) Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci 25(45):10469–10478

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SM, Kizhatil K, Kramarcy NR, Sen A, Sealock R, Bennett V (2001) FIGQY phosphorylation defines discrete populations of L1 cell adhesion molecules at sites of cell-cell contact and in migrating neurons. J Cell Sci 114(Pt 21):3823–3835

    CAS  PubMed  Google Scholar 

  • Kins S, Betz H, Kirsch J (2000) Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3(1):22–29. doi:10.1038/71096

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum K, Kriebel M, Kranz EU, Potz O, Volkmer H (2009) Analysis of non-canonical fibroblast growth factor receptor 1 (FGFR1) interaction reveals regulatory and activating domains of neurofascin. J Biol Chem 284(42):28533–28542. doi:10.1074/jbc.M109.004440, M109.004440 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kizhatil K, Wu YX, Sen A, Bennett V (2002) A new activity of doublecortin in recognition of the phospho-FIGQY tyrosine in the cytoplasmic domain of neurofascin. J Neurosci 22(18):7948–7958

    CAS  PubMed  Google Scholar 

  • Kneussel M, Brandstatter JH, Laube B, Stahl S, Muller U, Betz H (1999) Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci 19(21):9289–9297

    CAS  PubMed  Google Scholar 

  • Koroll M, Rathjen FG, Volkmer H (2001) The neural cell recognition molecule neurofascin interacts with syntenin-1 but not with syntenin-2, both of which reveal self-associating activity. J Biol Chem 276(14):10646–10654

    Article  CAS  PubMed  Google Scholar 

  • Koticha D, Babiarz J, Kane-Goldsmith N, Jacob J, Raju K, Grumet M (2005) Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol Cell Neurosci 30(1):137–148

    Article  CAS  PubMed  Google Scholar 

  • Koticha D, Maurel P, Zanazzi G, Kane-Goldsmith N, Basak S, Babiarz J, Salzer J, Grumet M (2006) Neurofascin interactions play a critical role in clustering sodium channels, ankyrin G and beta IV spectrin at peripheral nodes of Ranvier. Dev Biol 293(1):1–12. doi:10.1016/j.ydbio.2005.05.028, S0012-1606(05)00363-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kriebel M, Metzger J, Trinks S, Chugh D, Harvey RJ, Harvey K, Volkmer H (2011) The cell adhesion molecule neurofascin stabilizes Axo-axonic GABAergic terminals at the axon initial segment. J Biol Chem 286(27):24385–24393. doi:10.1074/jbc.M110.212191, M110.212191 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kriebel M, Wuchter J, Trinks S, Volkmer H (2012) Neurofascin: a switch between neuronal plasticity and stability. Int J Biochem Cell Biol 44(5):694–697. doi:10.1016/j.biocel.2012.01.012, S1357-2725(12)00016-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lambert S, Davis JQ, Bennett V (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 17(18):7025–7036

    CAS  PubMed  Google Scholar 

  • Lemaillet G, Walker B, Lambert S (2003) Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J Biol Chem 278(30):27333–27339. doi:10.1074/jbc.M303327200M303327200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lemmon V, Farr KL, Lagenaur C (1989) L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2(6):1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA (2011) The chandelier neuron in schizophrenia. Dev Neurobiol 71(1):118–126. doi:10.1002/dneu.20825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lonigro A, Devaux JJ (2009) Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 132(Pt 1):260–273. doi:10.1093/brain/awn281, awn281 [pii]

    PubMed  Google Scholar 

  • Maier O, van der Heide T, van Dam AM, Baron W, de Vries H, Hoekstra D (2005) Alteration of the extracellular matrix interferes with raft association of neurofascin in oligodendrocytes. Potential significance for multiple sclerosis? Mol Cell Neurosci 28(2):390–401. doi:10.1016/j.mcn.2004.09.012, S1044-7431(04)00233-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, Al-Hayani A, Davies SN, Rasband MN, Olsson T, Moldenhauer A, Velhin S, Hohlfeld R, Meinl E, Linington C (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204(10):2363–2372. doi:10.1084/jem.20071053, jem.20071053 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell KJ (2011) The genetics of neurodevelopmental disease. Curr Opin Neurobiol 21(1):197–203. doi:10.1016/j.conb.2010.08.009, S0959-4388(10)00129-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Elfenbein A, Simons M (2008) Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78(2):223–231. doi:10.1093/cvr/cvm086, cvm086 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2 (3):REVIEWS3005

    Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12):968–980. doi:10.1038/nrn1253

    Article  CAS  PubMed  Google Scholar 

  • Pruss T, Niere M, Kranz EU, Volkmer H (2004) Homophilic interactions of chick neurofascin in trans are important for neurite induction. Eur J Neurosci 20(11):3184–3188

    Article  PubMed  Google Scholar 

  • Pruss T, Kranz EU, Niere M, Volkmer H (2006) A regulated switch of chick neurofascin isoforms modulates ligand recognition and neurite extension. Mol Cell Neurosci 31(2):354–365

    Article  CAS  PubMed  Google Scholar 

  • Pruss H, Schwab JM, Derst C, Gortzen A, Veh RW (2011) Neurofascin as target of autoantibodies in Guillain-Barre syndrome. Brain 134(Pt 5):e173. doi:10.1093/brain/awq372, author reply e174. awq372 [pii]

    Article  PubMed  Google Scholar 

  • Ratcliffe CF, Westenbroek RE, Curtis R, Catterall WA (2001) Sodium channel beta1 and beta3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J Cell Biol 154(2):427–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rathjen FG, Wolff JM, Chang S, Bonhoeffer F, Raper JA (1987) Neurofascin: a novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell 51(5):841–849

    Article  CAS  PubMed  Google Scholar 

  • Rios JC, Melendez-Vasquez CV, Einheber S, Lustig M, Grumet M, Hemperly J, Peles E, Salzer JL (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 20(22):8354–8364

    CAS  PubMed  Google Scholar 

  • Saffell JL, Williams EJ, Mason IJ, Walsh FS, Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18(2):231–242

    Article  CAS  PubMed  Google Scholar 

  • Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40(2):297–318, S0896627303006287 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sherman DL, Tait S, Melrose S, Johnson R, Zonta B, Court FA, Macklin WB, Meek S, Smith AJ, Cottrell DF, Brophy PJ (2005) Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48(5):737–742

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu JY (1983) Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci 3(7):1450–1468

    CAS  PubMed  Google Scholar 

  • Stoeckli ET (2012) What does the developing brain tell us about neural diseases? Eur J Neurosci 35(12):1811–1817. doi:10.1111/j.1460-9568.2012.08171.x

    Article  PubMed  Google Scholar 

  • Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 150(3):657–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thaxton C, Pillai AM, Pribisko AL, Labasque M, Dupree JL, Faivre-Sarrailh C, Bhat MA (2010) In vivo deletion of immunoglobulin domains 5 and 6 in neurofascin (Nfasc) reveals domain-specific requirements in myelinated axons. J Neurosci 30(14):4868–4876. doi:10.1523/JNEUROSCI.5951-09.2010, 30/14/4868 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyagarajan SK, Ghosh H, Yevenes GE, Nikonenko I, Ebeling C, Schwerdel C, Sidler C, Zeilhofer HU, Gerrits B, Muller D, Fritschy JM (2011) Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci USA 108(1):379–384. doi:10.1073/pnas.1011824108, 1011824108 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkmer H, Hassel B, Wolff JM, Frank R, Rathjen FG (1992) Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily. J Cell Biol 118(1):149–161

    Article  CAS  PubMed  Google Scholar 

  • Volkmer H, Leuschner R, Zacharias U, Rathjen FG (1996) Neurofascin induces neurites by heterophilic interactions with axonal NrCAM while NrCAM requires F11 on the axonal surface to extend neurites. J Cell Biol 135(4):1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Volkmer H, Zacharias U, Norenberg U, Rathjen FG (1998) Dissection of complex molecular interactions of neurofascin with axonin-1, F11, and tenascin-R, which promote attachment and neurite formation of tectal cells. J Cell Biol 142(4):1083–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap CC, Vakulenko M, Kruczek K, Motamedi B, Digilio L, Liu JS, Winckler B (2012) Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 32(22):7439–7453. doi:10.1523/JNEUROSCI.5318-11.2012, 32/22/7439 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Jiang M, Miralles CP, Li RW, Chen G, de Blas AL (2007) Gephyrin clustering is required for the stability of GABAergic synapses. Mol Cell Neurosci 36(4):484–500. doi:10.1016/j.mcn.2007.08.008, S1044-7431(07)00193-5 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143(5):1295–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zonta B, Tait S, Melrose S, Anderson H, Harroch S, Higginson J, Sherman DL, Brophy PJ (2008) Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J Cell Biol 181(7):1169–1177. doi:10.1083/jcb.200712154, jcb.200712154 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zonta B, Desmazieres A, Rinaldi A, Tait S, Sherman DL, Nolan MF, Brophy PJ (2011) A critical role for neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 69(5):945–956. doi:10.1016/j.neuron.2011.02.021, S0896-6273(11)00119-X [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Frank Weise for helpful discussions and critical reading of the manuscript.

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjürgen Volkmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ebel, J., Beuter, S., Wuchter, J., Kriebel, M., Volkmer, H. (2014). Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin. In: Berezin, V., Walmod, P. (eds) Cell Adhesion Molecules. Advances in Neurobiology, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8090-7_10

Download citation

Publish with us

Policies and ethics