Skip to main content
Book cover

Rhodopsin pp 221–233Cite as

Oligomeric State of Rhodopsin Within Rhodopsin–Transducin Complex Probed with Succinylated Concanavalin A

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Rhodopsin—a prototypical G protein-coupled receptor (GPCR)—is abundantly expressed in the eye and stabilized by its covalently bound chromophore 11-cis-retinal. The signal of light is amplified and transmitted through the binding of heterotrimeric G protein transducin (G t ) to photoactivated rhodopsin following downstream pathways activation leading to light sensing in the brain. As demonstrated by atomic force microscopy (AFM), rhodopsin exists in the native membrane of the rod outer segment disks as dimers highly organized in tightly packed oligomers. However, functional importance of this organization is still debated. To clarify the role of the rhodopsin dimer in signaling activation and thus the binding of transducin, the complex between rhodopsin and transducin can be formed, purified, and probed with succinylated concanavalin A. This method can be potentially applied to other GPCRs to verify their oligomeric state.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62:701–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32:514–520

    Article  CAS  PubMed  Google Scholar 

  3. Ferre S, Casado V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baneres JL, Parello J (2003) Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J Mol Biol 329:815–829

    Article  CAS  PubMed  Google Scholar 

  5. Han Y, Moreira IS, Urizar E et al (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pellissier LP, Barthet G, Gaven F et al (2011) G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J Biol Chem 286:9985–9997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rivero-Muller A, Chou YY, Ji I et al (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 107:2319–2324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Comar WD, Schubert SM, Jastrzebska B et al (2014) Time-resolved fluorescence spectroscopy measures clustering and mobility of a G protein-coupled receptor opsin in live cell membranes. J Am Chem Soc 136:8342–8349

    Article  CAS  PubMed  Google Scholar 

  9. Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wu H, Wacker D, Mileni M et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Salom D, Lodowski DT, Stenkamp RE et al (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:16123–16128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  14. Jastrzebska B (2013) GPCR: G protein complexes—the fundamental signaling assembly. Amino Acids 45:1303–1314

    Article  CAS  PubMed  Google Scholar 

  15. Fukuda MN, Papermaster DS, Hargrave PA (1982) Structural analysis of carbohydrate moiety of bovine rhodopsin. Methods Enzymol 81:214–223

    Article  CAS  PubMed  Google Scholar 

  16. Lis H, Sharon N (1973) The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem 42:541–574

    Article  CAS  PubMed  Google Scholar 

  17. Jastrzebska B, Ringler P, Palczewski K et al (2013) The rhodopsin-transducin complex houses two distinct rhodopsin molecules. J Struct Biol 182:164–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Papermaster DS (1982) Preparation of retinal rod outer segments. Methods Enzymol 81:48–52

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Ohi M, Li Y, Cheng Y et al (2004) Negative staining and image classification: powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Jastrzebska Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jastrzebska, B. (2015). Oligomeric State of Rhodopsin Within Rhodopsin–Transducin Complex Probed with Succinylated Concanavalin A. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics