Skip to main content

Creating Knockouts of Conserved Oligomeric Golgi Complex Subunits Using CRISPR-Mediated Gene Editing Paired with a Selection Strategy Based on Glycosylation Defects Associated with Impaired COG Complex Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1496))

Abstract

The conserved oligomeric Golgi (COG) complex is a key evolutionally conserved multisubunit protein machinery that regulates tethering and fusion of intra-Golgi transport vesicles. The Golgi apparatus specifically promotes sorting and complex glycosylation of glycoconjugates. Without proper glycosylation and processing, proteins and lipids will be mislocalized and/or have impaired function. The Golgi glycosylation machinery is kept in homeostasis by a careful balance of anterograde and retrograde trafficking to ensure proper localization of the glycosylation enzymes and their substrates. This balance, like other steps of membrane trafficking, is maintained by vesicle trafficking machinery that includes COPI vesicular coat proteins, SNAREs, Rabs, and both coiled-coil and multi-subunit vesicular tethers. The COG complex interacts with other membrane trafficking components and is essential for proper localization of Golgi glycosylation machinery. Here we describe using CRISPR-mediated gene editing coupled with a phenotype-based selection strategy directly linked to the COG complex’s role in glycosylation homeostasis to obtain COG complex subunit knockouts (KOs). This has resulted in clonal KOs for each COG subunit in HEK293T cells and gives the ability to further probe the role of the COG complex in Golgi homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204

    Article  CAS  PubMed  Google Scholar 

  3. Willett R, Kudlyk T, Pokrovskaya I, Schonherr R, Ungar D, Duden R et al (2013) COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun 4:1553

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ungar D, Oka T, Vasile E, Krieger M, Hughson FM (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280:32729–32735

    Article  CAS  PubMed  Google Scholar 

  5. Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280:27613–27623

    Article  CAS  PubMed  Google Scholar 

  6. Willett R, Ungar D, Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whyte JRC, Munro S (2001) The SeC34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537

    Article  CAS  PubMed  Google Scholar 

  8. Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suvorova ES, Kurten RC, Lupashin VV (2001) Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J Biol Chem 276:22810–22818

    Article  CAS  PubMed  Google Scholar 

  10. Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133:263–273

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa T, Machida C, Yoshioka Y, Ueda T, Nakano A, Machida Y (2008) EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13:521–535

    Article  CAS  PubMed  Google Scholar 

  12. Foulquier F (2009) COG defects, birth and rise! Biochim Biophys Acta 1792:896–902

    Article  CAS  PubMed  Google Scholar 

  13. Zeevaert R, Foulquier F, Jaeken J, Matthijs G (2008) Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab 93:15–21

    Article  CAS  PubMed  Google Scholar 

  14. Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M et al (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10:518–523

    Article  CAS  PubMed  Google Scholar 

  15. Pokrovskaya ID, Szwedo JW, Goodwin A, Lupashina TV, Nagarajan UM, Lupashin VV (2012) Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway. Cell Microbiol 14:656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu S, Dominska-Ngowe M, Dykxhoorn DM (2014) Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication. Virus Res 192:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu J, Davoli T, Perriera JM, Chin CR, Gaiha GD, John SP et al (2014) Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. Cell Rep 9:752–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kudlyk T, Willett R, Pokrovskaya ID, Lupashin V (2013) COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic 14:194–204

    Article  CAS  PubMed  Google Scholar 

  20. Laufman O, Freeze HH, Hong W, Lev S (2013) Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes. Traffic 14:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  22. Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC et al (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10:1502–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV (2011) Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21:1554–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willett RA, Pokrovskaya ID, Lupashin VV (2013) Fluorescent microscopy as a tool to elucidate dysfunction and mislocalization of Golgi glycosyltransferases in COG complex depleted mammalian cells. Methods Mol Biol 1022:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ha JY, Pokrovskaya ID, Climer LK, Shimamura GR, Kudlyk T, Jeffrey PD et al (2014) Cog5-Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc Natl Acad Sci U S A 111:15762–15767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank the Digital Microscopy, Flow Cytometry, and DNA Sequencing Core Facilities at UAMS for their help in this project. This work was supported, in part, by the NIH grants GM083144 and U54 GM105814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Lupashin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Blackburn, J.B., Lupashin, V.V. (2016). Creating Knockouts of Conserved Oligomeric Golgi Complex Subunits Using CRISPR-Mediated Gene Editing Paired with a Selection Strategy Based on Glycosylation Defects Associated with Impaired COG Complex Function. In: Brown, W. (eds) The Golgi Complex. Methods in Molecular Biology, vol 1496. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6463-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6463-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6461-1

  • Online ISBN: 978-1-4939-6463-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics