Skip to main content

Essentials of Recombinase-Based Genetic Fate Mapping in Mice

  • Protocol
  • First Online:
Book cover Mouse Molecular Embryology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1092))

Abstract

Fate maps, by defining the relationship between embryonic tissue organization and postnatal tissue structure, are one of the most important tools on hand to developmental biologists. In the past, generating such maps in mice was hindered by their in utero development limiting the physical access required for traditional methods involving tracer injection or cell transplantation. No longer is physical access a requirement. Innovations over the past decade have led to genetic techniques that offer means to “deliver” cell lineage tracers noninvasively. Such “genetic fate mapping” approaches employ transgenic strategies to express genetically encoded site-specific recombinases in a cell type-specific manner to switch on expression of a cell-heritable reporter transgene as lineage tracer. The behaviors and fate of marked cells and their progeny can then be explored and their contributions to different tissues examined. Here, we review the basic concepts of genetic fate mapping and consider the strengths and limitations for their application. We also explore two refinements of this approach that lend improved spatial and temporal resolution: (1) Intersectional and subtractive genetic fate mapping and (2) Genetic inducible fate mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern CD, Fraser SE (2001) Tracing the lineage of tracing cell lineages. Nat Cell Biol 3:E216–E218

    Article  PubMed  CAS  Google Scholar 

  2. Dymecki SM, Tomasiewicz H (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev Biol 201:57–65

    Article  PubMed  CAS  Google Scholar 

  3. Zinyk DL, Mercer EH et al (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol 8:665–668

    Article  PubMed  CAS  Google Scholar 

  4. Dymecki SM, Kim JC (2007) Molecular neuroanatomy’s “Three Gs”: a primer. Neuron 54:17–34

    Article  PubMed  CAS  Google Scholar 

  5. Portales-Casamar E, Swanson DJ et al (2010) A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 107:16589–16594

    Article  PubMed  CAS  Google Scholar 

  6. Gong S, Zheng C et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  7. Gray PA, Fu H et al (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306:2255–2257

    Article  PubMed  CAS  Google Scholar 

  8. Visel A, Thaller C et al (2004) GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32:D552–D556

    Article  PubMed  CAS  Google Scholar 

  9. Magdaleno S, Jensen P et al (2006) BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 4:e86

    Article  PubMed  Google Scholar 

  10. Lein ES, Hawrylycz MJ et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  PubMed  CAS  Google Scholar 

  11. Awatramani R, Soriano P et al (2003) Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet 35:70–75

    Article  PubMed  CAS  Google Scholar 

  12. Farago AF, Awatramani RB et al (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  PubMed  CAS  Google Scholar 

  13. Kimmel RA, Turnbull DH et al (2000) Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 14:1377–1389

    PubMed  CAS  Google Scholar 

  14. Chai Y, Jiang X et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  15. Jiang X, Rowitch DH et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    PubMed  CAS  Google Scholar 

  16. Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    Article  PubMed  CAS  Google Scholar 

  17. Zirlinger M, Lo L et al (2002) Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc Natl Acad Sci U S A 99:8084–8089

    Article  PubMed  CAS  Google Scholar 

  18. Zervas M, Millet S et al (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  PubMed  CAS  Google Scholar 

  19. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897

    Article  PubMed  CAS  Google Scholar 

  20. Landsberg RL, Awatramani RB et al (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    Article  PubMed  CAS  Google Scholar 

  21. Sgaier SK, Millet S et al (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    PubMed  CAS  Google Scholar 

  22. Hunter NL, Dymecki SM (2007) Molecularly and temporally separable lineages form the hindbrain roof plate and contribute differentially to the choroid plexus. Development 134:3449–3460

    Article  PubMed  CAS  Google Scholar 

  23. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  24. Hoess R, Abremski K et al (1984) The nature of the interaction of the P1 recombinase Cre with the recombining site loxP. Cold Spring Harb Symp Quant Biol 49:761–768

    Article  PubMed  CAS  Google Scholar 

  25. McLeod M, Craft S et al (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6:3357–3367

    PubMed  CAS  Google Scholar 

  26. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  PubMed  CAS  Google Scholar 

  27. Dang DT, Perrimon N (1992) Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev Genet 13:367–375

    Article  PubMed  CAS  Google Scholar 

  28. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    PubMed  CAS  Google Scholar 

  29. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  30. Zambrowicz BP, Imamoto A et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94:3789–3794

    Article  PubMed  CAS  Google Scholar 

  31. Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA (2012) Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res 110:922–926

    Article  PubMed  CAS  Google Scholar 

  32. Zong H, Espinosa JS et al (2005) Mosaic analysis with double markers in mice. Cell 121:479–492

    Article  PubMed  CAS  Google Scholar 

  33. Madisen L, Zwingman TA et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto M, Shook NA et al (2009) A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47:107–114

    Article  PubMed  CAS  Google Scholar 

  35. Niwa H, Yamamura K et al (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto Y, Muramatsu K et al (2008) Neuron-specific and inducible recombination by Cre recombinase in the mouse. Neuroreport 19:621–624

    Article  PubMed  CAS  Google Scholar 

  37. Beard C, Hochedlinger K et al (2006) Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44:23–28

    Article  PubMed  CAS  Google Scholar 

  38. Buchholz F, Angrand PO et al (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez CI, Buchholz F et al (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  40. Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    Article  PubMed  Google Scholar 

  41. Buchholz F, Ringrose L et al (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24: 4256–4262

    Article  PubMed  CAS  Google Scholar 

  42. Jensen P, Farago AF et al (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11:417–419

    Article  PubMed  CAS  Google Scholar 

  43. Raymond CS, Soriano P (2010) ROSA26Flpo deleter mice promote efficient inversion of conditional gene traps in vivo. Genesis 48:603–606

    Article  PubMed  CAS  Google Scholar 

  44. Kranz A, Fu J, Duerschke K, Weidlich S, Naumann R, Stewart AF, Anastassiadis K (2010) An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis 48:512–520

    Article  PubMed  CAS  Google Scholar 

  45. Lao Z, Raju GP, Bai CB, Joyner AL (2012) MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep 2:386–396

    Article  PubMed  CAS  Google Scholar 

  46. Hirsch MR, d’Autreaux F, Dymecki SM, Brunet JF, Goridis C (2013) A Phox2b::FLPo transgenic mouse line suitable for intersectional genetics. Genesis 51(7):506–514. doi:10.1002/dvg.22393

    Article  PubMed  CAS  Google Scholar 

  47. Robertson SD, Plummer NW, de Marchena J, Jensen P (2013) Developmental origins of central norepinephrine neuron diversity. Nat Neurosci. doi:10.1038/nn.3458

    PubMed  Google Scholar 

  48. Cocas LA, Miyoshi G, Carney RS, Sousa VH, Hirata T, Jones KR, Fishell G, Huntsman MM, Corbin JG (2009) Emx1-lineage progenitors differentially contribute to neural diversity in the striatum and amygdala. J Neurosci 29:15933–15946

    Article  PubMed  CAS  Google Scholar 

  49. Bang SJ, Jensen P, Dymecki SM, Commons KG (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35:85–96

    Article  PubMed  Google Scholar 

  50. Dymecki SM, Ray RS et al (2010) Mapping cell fate and function using recombinase-based intersectional strategies. Methods Enzymol 477:183–213

    Article  PubMed  CAS  Google Scholar 

  51. Legue E, Joyner AL (2010) Genetic fate mapping using site-specific recombinases. Methods Enzymol 477:153–181

    Article  PubMed  CAS  Google Scholar 

  52. Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385

    Article  PubMed  Google Scholar 

  53. Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92:5940–5944

    Article  PubMed  CAS  Google Scholar 

  54. Metzger D, Clifford J et al (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  PubMed  CAS  Google Scholar 

  55. Feil R, Brocard J et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  56. Brocard J, Warot X et al (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci U S A 94(26):14559–14563

    Article  PubMed  CAS  Google Scholar 

  57. Danielian PS, Muccino D et al (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8(24):1323–1326

    Article  PubMed  CAS  Google Scholar 

  58. Schwenk F, Kuhn R et al (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 26:1427–1432

    Article  PubMed  CAS  Google Scholar 

  59. Vooijs M, Jonkers J et al (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2:292–297

    Article  PubMed  CAS  Google Scholar 

  60. Feil R, Wagner J et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  PubMed  CAS  Google Scholar 

  61. Indra AK, Warot X et al (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327

    Article  PubMed  CAS  Google Scholar 

  62. Imai T, Jiang M et al (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc Natl Acad Sci U S A 98:224–228

    PubMed  CAS  Google Scholar 

  63. Seibler J, Zevnik B et al (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res 31:e12

    Article  PubMed  Google Scholar 

  64. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318

    Article  PubMed  CAS  Google Scholar 

  65. Guo Q, Loomis C et al (2003) Fate map of mouse ventral limb ectoderm and the apical ectodermal ridge. Dev Biol 264:166–178

    Article  PubMed  CAS  Google Scholar 

  66. Hunter NL, Awatramani RB et al (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99–109

    Article  PubMed  CAS  Google Scholar 

  67. Legue E, Nicolas JF (2005) Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132:4143–4154

    Article  PubMed  CAS  Google Scholar 

  68. Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55:220–227

    Article  PubMed  CAS  Google Scholar 

  69. Naiche LA, Papaioannou VE (2007) Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45:768–775

    Article  PubMed  CAS  Google Scholar 

  70. Kim JC, Cook MN et al (2009) Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63:305–315

    Article  PubMed  CAS  Google Scholar 

  71. Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–642

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Jensen, P., Dymecki, S.M. (2014). Essentials of Recombinase-Based Genetic Fate Mapping in Mice. In: Lewandoski, M. (eds) Mouse Molecular Embryology. Methods in Molecular Biology, vol 1092. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-60327-292-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-292-6_26

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-60327-290-2

  • Online ISBN: 978-1-60327-292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics