Skip to main content

Ca2+ Signaling in Drosophila Photoreceptor Cells

  • Chapter
  • First Online:
Book cover Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

In Drosophila photoreceptor cells, Ca2+ exerts regulatory functions that control the shape, duration, and amplitude of the light response. Ca2+ also orchestrates light adaptation allowing Drosophila to see in light intensity regimes that span several orders of magnitude ranging from single photons to bright sunlight. The prime source for Ca2+ elevation in the cytosol is Ca2+ influx from the extracellular space through light-activated TRP channels. This Ca2+ influx is counterbalanced by constitutive Ca2+ extrusion via the Na+/Ca2+ exchanger, CalX. The light-triggered rise in intracellular Ca2+ exerts its regulatory functions through interaction with about a dozen well-characterized Ca2+ and Ca2+/CaM binding proteins. In this review we will discuss the dynamic changes in Ca2+ concentration upon illumination of photoreceptor cells. We will present the proteins that are known to interact with Ca2+ (/CaM) and elucidate the physiological functions of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pak WL, Grossfield J, Arnold KS (1970) Mutants of the visual pathway of Drosophila melanogaster. Nature 227(257):518–520

    Article  CAS  PubMed  Google Scholar 

  2. Smith DP, Stamnes MA, Zuker CS (1991) Signal transduction in the visual system of Drosophila. AnnuRevCell Biol 7:161–90: 161–190

    CAS  Google Scholar 

  3. Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454(5):821–847

    Article  CAS  PubMed  Google Scholar 

  4. Minke B, Hardie RC (2000) Genetic dissection of Drosophila phototransduction. In: Stavenga D, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics, Molecular mechanisms in visual transduction, vol 3. Elsevier, Amsterdam/London/New York/Oxford/Paris/Shannon/Tokyo, pp 449–525

    Google Scholar 

  5. Huber A (2004) Invertebrate phototransduction: multimolecular signaling complexes and the role of TRP and TRPL channels. In: Frings S, Bradley J (eds) Transduction channels in sensory cells. WILEY-VCH, Weinheim, pp 179–206

    Google Scholar 

  6. Tian Y, Hu W, Tong H et al (2012) Phototransduction in Drosophila. Sci China Life Sci 55(1):27–34. https://doi.org/10.1007/s11427-012-4272-4

    Article  CAS  PubMed  Google Scholar 

  7. O’Tousa JE (2002) Ca2+ regulation of Drosophila phototransduction. Adv Exp Med Biol 514:493–505

    Article  PubMed  Google Scholar 

  8. Hardie RC, Juusola M (2015) Phototransduction in Drosophila. Curr Opin Neurobiol 34:37–45. https://doi.org/10.1016/j.conb.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  9. Katz B, Minke B (2018) The Drosophila light-activated TRP and TRPL channels - targets of the phosphoinositide signaling cascade. Prog Retin Eye Res 66:200–219. https://doi.org/10.1016/j.preteyeres.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Huang J, Liu C-S, Hughes SA et al (2010) Activation of TRP channels by protons and Phosphoinositide depletion in Drosophila photoreceptors. Curr.Biol. 20:189–197

    Article  CAS  PubMed  Google Scholar 

  11. Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338(6104):260–263

    Article  CAS  PubMed  Google Scholar 

  12. Delgado R, Muñoz Y, Peña-Cortés H et al (2014) Diacylglycerol activates the light-dependent channel TRP in the photosensitive microvilli of Drosophila melanogaster photoreceptors. J Neurosci 34(19):6679–6686. https://doi.org/10.1523/JNEUROSCI.0513-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397(6716):255–259

    Article  CAS  PubMed  Google Scholar 

  14. Leung HT, Tseng-Crank J, Kim M et al (2008) DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 58(6):825–827

    Article  CAS  Google Scholar 

  15. Hardie RC (1996) INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J.Neurosci. 16(9):2924–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asteriti S, Liu C-H, Hardie RC (2017) Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 65:40–51. https://doi.org/10.1016/j.ceca.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oberwinkler J, Stavenga DG (2000) Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells. J.Neurosci. 20(5):1701–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Postma M, Oberwinkler J, Stavenga DG (1999) Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? Biophys.J. 77(4):1811–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peretz A, Suss-Toby E, Rom-Glas A et al (1994) The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specific mutations. Neuron 12(6):1257–1267

    Article  CAS  PubMed  Google Scholar 

  20. Ranganathan R, Bacskai BJ, Tsien RY et al (1994) Cytosolic calcium transients: spatial localization and role in Drosophila photoreceptor cell function. Neuron 13(4):837–848

    Article  CAS  PubMed  Google Scholar 

  21. Weiss S, Kohn E, Dadon D et al (2012) Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. J Neurosci 32(42):14696–14708. https://doi.org/10.1523/JNEUROSCI.2456-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardie RC (1996) A quantitative estimate of the maximum amount of light-induced Ca2+ release in Drosophila photoreceptors. JPhotochemPhotobiolB 35(1–2):83–89

    CAS  Google Scholar 

  23. Schwarz EM, Benzer S (1997) Calx, a Na-ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci U S A 94(19):10249–10254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang T, Xu H, Oberwinkler J et al (2005) Light activation, adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX. Neuron 45(3):367–378. https://doi.org/10.1016/j.neuron.2004.12.046

    Article  CAS  PubMed  Google Scholar 

  25. Gu Y, Oberwinkler J, Postma M et al (2005) Mechanisms of light adaptation in Drosophila photoreceptors. CurrBiol 15(13):1228–1234

    Article  CAS  Google Scholar 

  26. Magyar A, Bakos E, Váradi A (1995) Structure and tissue-specific expression of the Drosophila melanogaster organellar-type Ca2+-ATPase gene. Biochem J 310(Pt 3):757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardie RC (1996) Excitation of Drosophila photoreceptors by BAPTA and ionomycin: evidence for capacitative Ca2+ entry? Cell Calcium 20(4):315–327

    Article  CAS  PubMed  Google Scholar 

  28. Walz B, Baumann O (1995) Structure and cellular physiology of Ca2+ Stores in Invertebrate Photoreceptors. Cell Calcium 18(4):342–351

    Article  CAS  PubMed  Google Scholar 

  29. Brown JE, Blinks JR (1974) Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol 64(6):643–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Acharya JK, Jalink K, Hardy RW et al (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18(6):881–887

    Article  CAS  PubMed  Google Scholar 

  31. Raghu P, Colley NJ, Webel R et al (2000) Normal phototransduction in Drosophila photoreceptors lacking an InsP(3) receptor gene. MolCell Neurosci 15(5):429–445

    CAS  Google Scholar 

  32. Kohn E, Katz B, Yasin B et al (2015) Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo. J Neurosci 35(6):2530–2546. https://doi.org/10.1523/JNEUROSCI.3933-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bollepalli MK, Kuipers ME, Liu C-H et al (2017) Phototransduction in Drosophila is compromised by Gal4 expression but not by InsP3 receptor knockdown or mutation. eNeuro 4(3):ENEURO.0143–ENEU17.2017. https://doi.org/10.1523/ENEURO.0143-17.2017

    Article  Google Scholar 

  34. Schneggenburger R, Zhou Z, Konnerth A et al (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11(1):133–143

    Article  CAS  PubMed  Google Scholar 

  35. Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  36. Chu B, Postma M, Hardie RC (2013) Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors. BiophysJ 104(9):1905–1916

    Article  CAS  Google Scholar 

  37. Reuss H, Mojet MH, Chyb S et al (1997) In vivo analysis of the drosophila light-sensitive channels, TRP and TRPL. Neuron 19(6):1249–1259

    Article  CAS  PubMed  Google Scholar 

  38. Liu CH, Wang T, Postma M et al (2007) In vivo identification and manipulation of the Ca2+ selectivity filter in the Drosophila transient receptor potential channel. J Neurosci 27(3):604–615. https://doi.org/10.1523/JNEUROSCI.4099-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofstee CA, Stavenga DG (1996) Calcium homeostasis in photoreceptor cells of Drosophila mutants inaC and trp studied with the pupil mechanism. VisNeurosci 13(2):257–263

    CAS  Google Scholar 

  40. Hardie RC (1991) Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc R Soc Lond Ser B Biol Sci 245(1314):203–210. https://doi.org/10.1098/rspb.1991.0110

    Article  Google Scholar 

  41. Hardie RC, Minke B (1994) Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. JGenPhysiol 103(3):409–427

    CAS  Google Scholar 

  42. Ballinger DG, Xue N, Harshman KD (1993) A Drosophila photoreceptor cell-specific protein, calphotin, binds calcium and contains a leucine zipper. Proc Natl Acad Sci U S A 90(4):1536–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin JH, Benzer S, Rudnicka M et al (1993) Calphotin: a Drosophila photoreceptor cell calcium-binding protein. Proc Natl Acad Sci U S A 90(4):1531–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Y, Ballinger D (1994) Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival. Genetics 138(2):413–421

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18(1):95–105

    Article  CAS  PubMed  Google Scholar 

  46. Warr CG, Kelly LE (1996) Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem J 314(Pt 2):497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter JA, Minke B, Montell C (1995) Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J 14(18):4450–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kahn ES, Matsumoto H (1997) Calcium/calmodulin-dependent kinase II phosphorylates Drosophila visual arrestin. JNeurochem 68(1):169–175

    Article  CAS  Google Scholar 

  49. Lee SJ, Montell C (2001) Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin. Neuron 32(6):1097–1106

    Article  CAS  PubMed  Google Scholar 

  50. Xu XZ, Choudhury A, Li X et al (1998) Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J.Cell Biol. 142(2):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hasan G, Rosbash M (1992) Drosophila homologs of two mammalian intracellular Ca(2+)-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116(4):967–975

    CAS  PubMed  Google Scholar 

  52. Xu XZS, Wes PD, Chen H et al (1998) Retinal targets for calmodulin include proteins implicated in synaptic transmission. In: The journal of biological chemistry (USA), vol 273, pp 31297–31307

    Google Scholar 

  53. Scott K, Sun Y, Beckingham K et al (1997) Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91(3):375–383

    Article  CAS  PubMed  Google Scholar 

  54. Lee SJ, Xu H, Montell C (2004) Rhodopsin kinase activity modulates the amplitude of the visual response in Drosophila. ProcNatlAcadSciUSA 101(32):11874–11879

    Article  CAS  Google Scholar 

  55. Plangger A, Malicki D, Whitney M et al (1994) Mechanism of arrestin 2 function in rhabdomeric photoreceptors. J.Biol.Chem. 269(43):26969–26975

    CAS  PubMed  Google Scholar 

  56. Vinos J, Jalink K, Hardy RW et al (1997) A G protein-coupled receptor phosphatase required for rhodopsin function. Science 277(5326):687–690

    Article  CAS  PubMed  Google Scholar 

  57. Kiselev A, Socolich M, Vinos J et al (2000) A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 28(1):139–152

    Article  CAS  PubMed  Google Scholar 

  58. Byk T, Bar-Yaacov M, Doza YN et al (1993) Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. ProcNatlAcadSciUSA 90(5):1907–1911

    Article  CAS  Google Scholar 

  59. Selinger Z, Doza YN, Minke B (1993) Mechanisms and genetics of photoreceptors desensitization in Drosophila flies. BiochimBiophysActa 1179(3):283–299

    CAS  Google Scholar 

  60. Montell C, Rubin GM (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52(5):757–772

    Article  CAS  PubMed  Google Scholar 

  61. Porter JA, Hicks JL, Williams DS et al (1992) Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells. J.Cell Biol. 116(3):683–693

    Article  CAS  PubMed  Google Scholar 

  62. Hicks JL, Williams DS (1992) Distribution of the myosin I-like ninaC proteins in the Drosophila retina and ultrastructural analysis of mutant phenotypes. J Cell Sci 101(Pt 1):247–254

    CAS  PubMed  Google Scholar 

  63. Porter JA, Montell C (1993) Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. JCell Biol 122(3):601–612

    Article  CAS  Google Scholar 

  64. Minke B (2012) The history of the prolonged depolarizing afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction. J Neurogenet 26(2):106–117. https://doi.org/10.3109/01677063.2012.666299

    Article  CAS  PubMed  Google Scholar 

  65. Lee S-J, Montell C (2004) Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 43(1):95–103. https://doi.org/10.1016/j.neuron.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  66. Lee S-J, Xu H, Kang L-W et al (2003) Light adaptation through phosphoinositide-regulated translocation of Drosophila visual arrestin. Neuron 39(1):121–132

    Article  CAS  PubMed  Google Scholar 

  67. Satoh AK, Ready DF (2005) Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr.Biol. 15(19):1722–1733

    Article  CAS  PubMed  Google Scholar 

  68. Liu CH, Satoh AK, Postma M et al (2008) Ca2+−dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 59(5):778–789. https://doi.org/10.1016/j.neuron.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Satoh AK, Xia H, Yan L et al (2010) Arrestin translocation is stoichiometric to rhodopsin isomerization and accelerated by phototransduction in Drosophila photoreceptors. Neuron 67(6):997–1008. https://doi.org/10.1016/j.neuron.2010.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Komori N, Usukura J, Kurien B et al (1994) Phosrestin I, an arrestin homolog that undergoes light-induced phosphorylation in dipteran photoreceptors. Insect Biochem Mol Biol 24(6):607–617

    Article  CAS  PubMed  Google Scholar 

  71. Alloway PG, Dolph PJ (1999) A role for the light-dependent phosphorylation of visual arrestin. Proc.Natl.Acad.Sci.U.S.A 96(11):6072–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kristaponyte I, Hong Y, Lu H et al (2012) Role of rhodopsin and arrestin phosphorylation in retinal degeneration of Drosophila. J.Neurosci. 32(31):10758–10766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Griffith LC, Verselis LM, Aitken KM et al (1993) Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron 10(3):501–509

    Article  CAS  PubMed  Google Scholar 

  74. Steele FR, Washburn T, Rieger R et al (1992) Drosophila retinal-degeneration-C (Rdgc) encodes a novel serine threonine protein phosphatase. Cell 69(4):669–676

    Article  CAS  PubMed  Google Scholar 

  75. Voolstra O, Rhodes-Mordov E, Katz B et al (2017) The phosphorylation state of the Drosophila TRP channel modulates the frequency response to oscillating light in vivo. J Neurosci 37(15):4213–4224. https://doi.org/10.1523/JNEUROSCI.3670-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413(6852):186–193

    Article  CAS  PubMed  Google Scholar 

  77. Huber A, Sander P, Gobert A et al (1996) The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J 15(24):7036–7045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scott K, Zuker CS (1998) Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395(6704):805–808

    Article  CAS  PubMed  Google Scholar 

  79. Ranganathan R, Harris GL, Stevens CF et al (1991) A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature 354(6350):230–232

    Article  CAS  PubMed  Google Scholar 

  80. Hardie RC (1995) Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors. J Neurosci 15(1 Pt 2):889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chu B, Liu C-H, Sengupta S et al (2013) Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors. J Neurophysiol 109(8):2044–2055. https://doi.org/10.1152/jn.00001.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang J, Lin Y, Zhang Z et al (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276(24):21303–21310. https://doi.org/10.1074/jbc.M102316200

    Article  CAS  PubMed  Google Scholar 

  83. Zheng Y-H, Liu W (2016) Identification and characterization of a new Calmodulin binding site at the C-terminus of Drosophila TRP Channel. Chinese J Biochem Mol Biol 32(7):790–797. https://doi.org/10.13865/j.cnki.cjbmb.2016.07.09

    Article  CAS  Google Scholar 

  84. Sun Z, Zheng Y, Liu W (2018) Identification and characterization of a novel calmodulin binding site in Drosophila TRP C-terminus. Biochem Biophys Res Commun 501:434–439. https://doi.org/10.1016/j.bbrc.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  85. Running Deer JL, Hurley JB, Yarfitz SL (1995) G protein control of Drosophila photoreceptor phospholipase C. J.Biol.Chem. 270(21):12623–12628

    Article  CAS  PubMed  Google Scholar 

  86. Katz B, Minke B (2012) Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J Neurosci 32(8):2722–2733. https://doi.org/10.1523/JNEUROSCI.5221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hardie RC (2005) Inhibition of phospholipase C activity in Drosophila photoreceptors by 1,2-bis(2-aminophenoxy)ethane N,N,N’,N’-tetraacetic acid (BAPTA) and di-bromo BAPTA. Cell Calcium 38(6):547–556. https://doi.org/10.1016/j.ceca.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  88. Sengupta S, Barber TR, Xia H et al (2013) Depletion of PtdIns(4,5)P(2) underlies retinal degeneration in Drosophila trp mutants. J Cell Sci 126(Pt 5):1247–1259. https://doi.org/10.1242/jcs.120592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huber A, Sander P, Bahner M et al (1998) The TRP Ca2+ channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett 425(2):317–322

    Article  CAS  PubMed  Google Scholar 

  90. Hardie RC, Liu C-H, Randall AS et al (2015) In vivo tracking of phosphoinositides in Drosophila photoreceptors. J Cell Sci 128(23):4328–4340. https://doi.org/10.1242/jcs.180364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schaeffer E, Smith D, Mardon G et al (1989) Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell 57(3):403–412

    Article  CAS  PubMed  Google Scholar 

  92. Raghu P, Usher K, Jonas S et al (2000.Apr.;26.(1.):169.-79) Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 26(1):169–179

    Article  CAS  PubMed  Google Scholar 

  93. Huber A, Sander P, Paulsen R (1996) Phosphorylation of the InaD gene product, a photoreceptor membrane protein required for recovery of visual excitation. JBiolChem 271(20):11710–11717

    CAS  Google Scholar 

  94. Liu M, Parker LL, Wadzinski BE et al (2000) Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J.Biol.Chem. 275(16):12194–12199

    Article  CAS  PubMed  Google Scholar 

  95. Mishra P, Socolich M, Wall MA et al (2007) Dynamic scaffolding in a G protein-coupled signaling system. Cell 131(1):80–92

    Article  CAS  PubMed  Google Scholar 

  96. Voolstra O, Spät P, Oberegelsbacher C et al (2015) Light-dependent phosphorylation of the Drosophila inactivation no afterpotential D (INAD) scaffolding protein at Thr170 and Ser174 by eye-specific protein kinase C. PLoS One 10(3):e0122039. https://doi.org/10.1371/journal.pone.0122039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Voolstra O, Bartels J-P, Oberegelsbacher C et al (2013) Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases. PLoS One 8(9):e73787. https://doi.org/10.1371/journal.pone.0073787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Balakrishnan SS, Basu U, Raghu P (2015) Phosphoinositide signalling in Drosophila. Biochim Biophys Acta 1851(6):770–784. https://doi.org/10.1016/j.bbalip.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  99. Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  100. Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca (a mechanism for the control of the light flow in the rhabdomeres of the complex eye of Musca). Kybernetik 6(1):13–22

    Article  CAS  PubMed  Google Scholar 

  101. Kirschfeld K, Vogt K (1980) Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 67(10):516–517. https://doi.org/10.1007/BF01047639

    Article  CAS  Google Scholar 

  102. Katz B, Voolstra O, Tzadok H et al (2017) The latency of the light response is modulated by the phosphorylation state of Drosophila TRP at a specific site. Channels (Austin) 11(6):678–685. https://doi.org/10.1080/19336950.2017.1361073

    Article  Google Scholar 

  103. Bähner M, Frechter S, Da Silva N et al (2002) Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 34:83–93

    Article  PubMed  Google Scholar 

  104. Kosloff M, Elia N, Joel-Almagor T et al (2003) Regulation of light-dependent Gq alpha translocation and morphological changes in fly photoreceptors. EMBO J 22(3):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cronin MA, Lieu MH, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. JCell Sci 119:2935–2944

    Article  CAS  Google Scholar 

  106. Oberegelsbacher C, Schneidler C, Voolstra O et al (2011) The Drosophila TRPL ion channel shares a Rab-dependent translocation pathway with rhodopsin. EurJCell Biol 90(8):620–630

    CAS  Google Scholar 

  107. Meyer NE, Joel-Almagor T, Frechter S et al (2006) Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J.Cell Sci. 119:2592–2603

    Article  CAS  PubMed  Google Scholar 

  108. Frechter S, Elia N, Tzarfaty V et al (2007) Translocation of Gq alpha mediates long-term adaptation in Drosophila photoreceptors. J.Neurosci. 27(21):5571–5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cronin MA, Diao F, Tsunoda S (2004) Light-dependent subcellular translocation of Gqalpha in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC. J.Cell Sci. 117(Pt 20):4797–4806

    Article  CAS  PubMed  Google Scholar 

  110. Stavenga DG (2004) Angular and spectral sensitivity of fly photoreceptors. III. Dependence on the pupil mechanism in the blowfly Calliphora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(2):115–129. https://doi.org/10.1007/s00359-003-0477-0

    Article  CAS  PubMed  Google Scholar 

  111. Franceschini N (1972) Pupil and Pseudopupil in the compound eye of Drosophila. In: Wehner R (ed) Information processing in the visual Systems of Anthropods: symposium held at the Department of Zoology, University of Zurich, March 6–9, 1972. Springer, Berlin/Heidelberg, pp 75–82

    Chapter  Google Scholar 

  112. Satoh AK, Li BX, Xia H et al (2008) Calcium-activated myosin V closes the Drosophila pupil. Curr Biol 18(13):951–955. https://doi.org/10.1016/j.cub.2008.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsunoda S, Zuker CS (1999) The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 26(5):165–171

    Article  CAS  PubMed  Google Scholar 

  114. Liu W, Wen W, Wei Z et al (2011) The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell 145(7):1088–1101. https://doi.org/10.1016/j.cell.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  115. Teng DH, Chen CK, Hurley JB (1994) A highly conserved homologue of bovine neurocalcin in Drosophila melanogaster is a Ca(2+)-binding protein expressed in neuronal tissues. J Biol Chem 269(50):31900–31907

    CAS  PubMed  Google Scholar 

  116. Faurobert E, Chen CK, Hurley JB et al (1996) Drosophila neurocalcin, a fatty acylated, Ca2+−binding protein that associates with membranes and inhibits in vitro phosphorylation of bovine rhodopsin. J Biol Chem 271(17):10256–10262

    Article  CAS  PubMed  Google Scholar 

  117. Kawamura S, Hisatomi O, Kayada S et al (1993) Recoverin has S-modulin activity in frog rods. J Biol Chem 268(20):14579–14582

    CAS  PubMed  Google Scholar 

  118. Song Z, Postma M, Billings SA et al (2012) Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22(15):1371–1380. https://doi.org/10.1016/j.cub.2012.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of the authors has been supported by the German Research Foundation (DFG Hu839/7-1, Vo1741/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voolstra, O., Huber, A. (2020). Ca2+ Signaling in Drosophila Photoreceptor Cells. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_34

Download citation

Publish with us

Policies and ethics