Skip to main content

Can Motor Recovery in Stroke Be Improved by Non-invasive Brain Stimulation?

  • Chapter
  • First Online:
Book cover Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

At the present time, there is enormous interest in methods of non-invasive brain stimulation. These interact with ongoing neural activity, mainly in cerebral cortex, and have measureable effects on behaviours in healthy people. More intriguingly, they appear to have effects on synaptic plasticity that persist even after stimulation has ceased. This has led, as might be expected, to the proposal that brain stimulation methods might be therapeutically useful in rehabilitation. The rationale is that physical therapy involves learning new patterns of activity to compensate for those lost to the stroke. Enhanced “plasticity” produced by brain stimulation might increase the ability to learn and enhance therapy. However, if things really were as simple as this, brain stimulation would be on its way to becoming a standard addition to treatment in all departments of rehabilitation. The fact that this has not happened means that something is not quite correct. Is the theory untenable, or are the methods of stimulation suboptimal?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N et al (2016) Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med 8: 330re1

    Google Scholar 

  • Barker AT, Freeston IL, Jalinous R, Jarratt JA (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 20:100–109

    Article  CAS  PubMed  Google Scholar 

  • Biernaskie J, Chernenko G, Corbett D (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24:1245–1254

    Article  CAS  PubMed  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature 196:584–585

    Article  CAS  PubMed  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  CAS  PubMed  Google Scholar 

  • D’Ostilio K, Goetz SM, Hannah R, Ciocca M, Chieffo R et al (2016) Effect of coil orientation on strength-duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 127:675–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048

    Article  PubMed  Google Scholar 

  • Gharabaghi A, Kraus D, Leao MT, Spuler M, Walter A et al (2014) Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci 8:122

    PubMed  PubMed Central  Google Scholar 

  • Hamada M, Ugawa Y (2010) Quadripulse stimulation–a new patterned rTMS. Restor Neurol Neurosci 28:419–424

    PubMed  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:1–6

    Article  Google Scholar 

  • Kim YH, Park JW, Ko MH, Jang SH, Lee PK (2004) Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci Lett 367:181–185

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol 21:636–644

    Article  CAS  PubMed  Google Scholar 

  • Kuo HI, Bikson M, Datta A, Minhas P, Paulus W et al (2013) Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul 6:644–648

    Article  PubMed  Google Scholar 

  • Lefaucheur JP, Andre-Obadia N, Antal A, Ayache SS, Baeken C et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  • Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247

    Article  PubMed  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438

    Article  CAS  PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M et al (2002) Early consolidation in human primary motor cortex. Nature 415:640–644

    Article  CAS  PubMed  Google Scholar 

  • Muller-Dahlhaus F, Ziemann U, Classen J (2010) Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci 2:34

    PubMed  PubMed Central  Google Scholar 

  • Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10:224–234

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nudo RJ (1997) Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Mol Psychiatry 2:188–191

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16:638–644

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  CAS  PubMed  Google Scholar 

  • Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B et al (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106:1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp, pp 159–200

    Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584

    Article  PubMed  Google Scholar 

  • Teo JT, Swayne OB, Cheeran B, Greenwood RJ, Rothwell JC (2011) Human theta burst stimulation enhances subsequent motor learning and increases performance variability. Cereb Cortex 21:1627–1638

    Article  PubMed  Google Scholar 

  • Traversa R, Cicinelli P, Bassi A, Rossini PM, Bernardi G (1997) Mapping of motor cortical reorganization after stroke—a brain stimulation study with focal magnetic pulses. Stroke 28:110–117

    Article  CAS  PubMed  Google Scholar 

  • Triccas LT, Burridge JH, Hughes A, Verheyden G, Desikan M, Rothwell J (2015) A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation 37:181–191

    Article  PubMed  Google Scholar 

  • Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R (2002) Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35:205–211

    Article  CAS  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2004) The influence of time after stroke on brain activations during a motor task. Ann Neurol 55:829–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Werk CM, Chapman CA (2003) Long-term potentiation of polysynaptic responses in layer V of the sensorimotor cortex induced by theta-patterned tetanization in the awake rat. Cereb Cortex 13:500–507

    Article  PubMed  Google Scholar 

  • Werk CM, Klein HS, Nesbitt CE, Chapman CA (2006) Long-term depression in the sensorimotor cortex induced by repeated delivery of 10 Hz trains in vivo. Neuroscience 140:13–20

    Article  CAS  PubMed  Google Scholar 

  • Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR et al (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127:1031–1048

    Article  CAS  PubMed  Google Scholar 

  • Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN (2012) Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 135:2277–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziemann U, Paulus W, Nitsche M, Pascual-Leone A, Byblow WD et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimulat 164–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Rothwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rothwell, J.C. (2016). Can Motor Recovery in Stroke Be Improved by Non-invasive Brain Stimulation?. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_17

Download citation

Publish with us

Policies and ethics