Skip to main content

Neurogenetic Compartments of the Mouse Diencephalon and some Characteristic Gene Expression Patterns

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

In the last 10 years our concept of the developing diencephalon has changed dramatically. This is a consequence of an increasing number of morphological, chemoarchitectural, gene expression and experimental data that resist a satisfactory interpretation within the usual morphological schema suggested by textbooks, represented by the so-called columnar view of the vertebrate forebrain. The columnar paradigm was instaurated by Herrick (1910), who divided the vertebrate diencephalon into four superposed columns separated by ventricular sulci. This schema was later supported by numerous adherents, among which Kuhlenbeck played a singular role (Kuhlenbeck 1973, and earlier work reviewed therein). The four columns were called epithalamus, thalamus dorsalis, thalamus ventralis and hypothalamus (from dorsal to ventral). They were held to be longitudinal parts of the neural tube, though this view is only possible by arbitrary disregard of the notorius axial bending of the rostral neural tube at the cephalic flexure (Keyser 1972; Puelles and Rubenstein 1993; Puelles 1995). Among other problems (see Puelles 1995), this schema typically dealt poorly with the pretectum, causing many authors to fail to distinguish it adequately from the dorsal thalamus, the epithalamus or the midbrain roof. Various descriptive embryologists noticed over the years the difficulties of the columnar approach, favoring a segmental paradigm, but did not achieve a substantial impact with their alternative interpretations (Rendahl 1924; Tello 1934; Bergquist 1954; Coggeshall 1964; Keyser 1972; Gribnau and Geijsberts 1985). These, nevertheless, finally constituted the base of the present conceptions, together with parallel work on non-mammalian vertebrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J, Bayer SA (1978) Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 182: 945–972

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1979) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188: 455–472

    Article  PubMed  CAS  Google Scholar 

  • Angevine JB (1970) Time of neuron origin in the diencephalon of the mouse. An autoradio-graphic study. J Comp Neurol 139: 129–188

    Article  PubMed  Google Scholar 

  • Avantaggiato V, Pandolfi PP, Ruthardt M, Hawe N, Acampora D, Pelicci PG, Simeone A (1995) Developmental analysis of murine Promyelocyte Leukemia Zinc Finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J Neurosci 15: 4927–4942

    PubMed  CAS  Google Scholar 

  • Bergquist H (1954) Ontogenesis of diencephalic nuclei in vertebrates. A comparative study. K Fysiogr Sallsk Lund Handl 6: 1–34

    Google Scholar 

  • Bosse A, Zulch A, Becker MB, Torres M, Gomez-Skarmeta JL, Modolell J, Gruss P (1997) Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev 69: 169–181

    Article  PubMed  CAS  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13: 3155–3172

    PubMed  CAS  Google Scholar 

  • Bulfone A, Smiga SM, Shimamura K, Puelles L, Peterson A, Rubenstein JLR (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15: 63–78

    Google Scholar 

  • Caballero-Bleda M, Fernandez B, Puelles L (1992) The pretectal complex of the rabbit: distribution of AChE and NADPH-diaphorase activities. Acta Anat 144: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Bleda M, Lagares C, Fernandez B, Puelles L (1993) A chemoarchitectonically similar internal extension connects the rabbit intergeniculate leaflet to midline dorsal thalamic nuclei. J Hirnforsch 34: 33–40

    Google Scholar 

  • Chazaud C, Oulad-Abdelghani M, Bouillet P, Decimo D, Chambon P, Dolle P (1996) AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech Dev 54: 83–94

    Google Scholar 

  • Cho EA, Dressler GR (1998) TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs. Mech Dev 77: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall RE (1964) A study of diencephalic development in the albino rat. J Comp Neurol 122: 241–269

    Article  PubMed  CAS  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380: 66–68

    Article  PubMed  CAS  Google Scholar 

  • de Castro F, Cobos I, Puelles L, Martinez S (1998) Calretinin in pretecto- and olivocerebellar projections in the chick: immunohistochemical and experimental study. J Comp Neurol 397: 149–162

    Article  PubMed  Google Scholar 

  • Fan C-M, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein JLR, Tessier-Lavigne M (1996) Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Figdor MC, Stern CD (1993) Segmental organization of embryonic diencephalon. Nature 363: 630–634

    Article  PubMed  CAS  Google Scholar 

  • Foster GA (1998) Chemical neuroanatomy of the prenatal rat brain. A developmental atlas. Oxford University Press, Oxford New York Tokyo

    Google Scholar 

  • Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins ( BMPs) as regulators of dorsal forebrain development. Development 124: 2203–2212

    Google Scholar 

  • Garel S, Marin F, Mattei MG, Vesque C, Vincent A, Charnay P (1997) Family of Ebf/Olf-l-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system. Dev Dyn 210: 191–205

    Article  PubMed  CAS  Google Scholar 

  • Gribnau AAM, Geijsberts LGM (1985) Morphogenesis of the brain in staged Rhesus monkey embryos. Adv Anat Embryol Cell Biol 91: 1–69

    Article  PubMed  CAS  Google Scholar 

  • Grindley JC, Hargett LK, Hill RE, Ross A, Hogan BL (1997) Disruption of PAX6 function in mice homozygous for the Pax6/Sey-1/Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech Dev 64: 111–126

    Article  PubMed  CAS  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20: 413–545

    Article  Google Scholar 

  • His W (1893) Vorschläge zur Einteilung des Gehirns. Arch Anat Entwicklungsgesch 17: 172–179

    Google Scholar 

  • Hsieh-Li HM, Witte DP, Szucsik JC, Weinstein M, Li H, Potter SS (1995) Gsh-2, a murine homeobox gene expressed in the developing brain. Mech Dev 50: 177–186

    Google Scholar 

  • Jacobowitz DM, Abbott LC (1997) Chemoarchitectonic atlas of the developing mouse brain. CRC Press, Boca Raton

    Google Scholar 

  • Keyser A (1972) The development of the diencephalon of the chinese hamster. Acta Anatomica 83: 1–181

    Google Scholar 

  • Kitamura K, Miura H, Yanazawa M, Miyashita T, Kato K (1997) Expression patterns of Brxl (Rieg gene), Sonic hedgehog, Nkx2.2, Dlxl and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech Dev 67: 83–96

    Article  PubMed  CAS  Google Scholar 

  • Korematsu K, Redies C (1997) Restricted expression of cadherin-8 in segmental and functional subdivisions of the embryonic mouse brain. Dev Dyn 208: 178–189

    Article  PubMed  CAS  Google Scholar 

  • Kuhlenbeck H (1973) The central nervous system of vertebrates. Vol 3 Part I I. S Karger, Berlin

    Google Scholar 

  • Lagares C, Caballero-Bleda M, Fernandez B, Puelles L (1994) Reciprocal connections between the rabbit suprageniculate pretectal nucleus and the superior colliculus: tracer study with horseradish peroxidase and Fluorogold. Visual Neurosci 11: 347–353

    Article  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Martínez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene Ent. Neuron 6: 971–981

    Article  PubMed  Google Scholar 

  • Martínez S, Crossley PH, Cobos I, Rubenstein JLR, Martin GR (1999) FGF-8 induces an isthmic organizer and isthmocerebellar development in the caudal forebrain via a repressive effect on Otx2 expression. Development 126: 1189–1200

    PubMed  Google Scholar 

  • Mastick GS, Easter SE (1996) Initial organization of neurons and tracts in the embryonic mouse fore- and midbrain. Dev Biol 173: 79–94

    Article  PubMed  CAS  Google Scholar 

  • Mellitzer G, Xu Q, Wilkinson DG (1999) Eph receptors and ephrins restricted cell intermingling and communication. Nature 400: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Yanazawa M, Kato K, Kitamura K (1997) Expression of a novel aristaless related homeobox gene `Arx’ in the vertebrate telencephalon, diencephalon and floor plate. Mech Dev 65: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Martin GR, Rubenstein JLR (1999) Neocortical regionalization is preserved in the absence of thalamic innervation in newborn Gbx-2 mutant mice. Science 285: 906–909

    Article  PubMed  CAS  Google Scholar 

  • Mucchielli ML, Martinez S, Pattyn A, Goridis C, Brunet JF (1996) Otlx-2, an Otx-related homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol Cell Neurosci 8: 258–271

    Google Scholar 

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The Central Nervous System of Vertebrates, Vol I; chapter 4, pp 159–228. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121: 4045–4055

    Google Scholar 

  • Paxinos G, Ashwell KS, Törk Y (1994) Atlas of the developing rat nervous system. 2nd edn. Academic Press, London

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KS, Watson C (1999) Chemoarchitectonic Atlas of the Rat Brain. Academic Press, London

    Google Scholar 

  • Platt KA, Michaud J, Joyner AL (1997) Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals, suggesting a conservation of pathways between flies and mice. Mech Dev 62: 121–135

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, Puelles L (1999) A prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain and ancillary markers. J Comp Neurol (in apress)

    Google Scholar 

  • Price M, Lemaistre M, Pischetola M, Lauro RD, Duboule D (1991) A mouse gene related to Distal-less shows a restricted expression in the developing forebrain. Nature 351: 748–751

    Article  PubMed  CAS  Google Scholar 

  • Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46: 319–337

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. TINS 16: 472–479

    PubMed  CAS  Google Scholar 

  • Puelles L, Amat JA, Martinez-de-la-Torre M (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of AChEpositive neuroblasts up to stage HH18. J Comp Neurol 266: 247–268

    CAS  Google Scholar 

  • Puelles L, Guillén M, Martinez de la Torre M (1991) Observations on the fate of nucleus superficialis magnocellularis of Rendahl in the avian diencephalon, bearing on the organization and nomenclature of neighboring retinorecipient nuclei. Anat Embryol 183: 221–233

    CAS  Google Scholar 

  • Puelles L, Sanchez MP, Spreafico R, Fairen A (1992) Prenatal development of calbindin immunoreactivity in the dorsal thalamus of the rat. Neuroscience 46: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Redies C (1995) Cadherin expression in the developing vertebrate brain: from neuromeres to brain nuclei and neural circuits. Exp Brain Res 220: 243–256

    CAS  Google Scholar 

  • Redies C, Takeichi M (1996) Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev Biol 180: 413–423

    Article  PubMed  CAS  Google Scholar 

  • Rendahl H (1924) Embryologische and morphologische Studien über das Zwischenhirn beim Huhn. Acta Zool Stockh 5: 241–344

    Article  Google Scholar 

  • Robinson GW, Wray S, Mahon KA (1991) Spatially restricted expression of a member of a new family of murine distal-less homeobox genes in the developing forebrain. New Biologist 3: 1183–1194

    PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266: 578–580

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. An Rev Neurosci 21: 445–477

    Article  CAS  Google Scholar 

  • Ruiz I, Altaba A (1998) Neural patterning. Deconstructing the organizer. Nature 391: 748–749

    Google Scholar 

  • Salbaum JM (1998) Punc, a novel mouse gene of the immunoglobulin superfamily, is expressed predominantly in the developing nervous system. Mech Dev 71: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118: 47–59

    PubMed  CAS  Google Scholar 

  • Schubert FR, Fainsod A, Gruenbaum Y, Gruss P (1995) Expression of the novel murine homeobox gene Sax-1 in the developing nervous system. Mech Dev 51: 99–114

    Article  PubMed  CAS  Google Scholar 

  • Shimamura K, Rubenstein JLR (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124: 2709–2718

    PubMed  CAS  Google Scholar 

  • Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JLR (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121: 3923–3933

    PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains for homeobox genes in developing rostral brain. Nature 358: 687–690

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Mallaci A, Stornaiuolo A, D’Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12: 2735–2747

    PubMed  CAS  Google Scholar 

  • Simeone A, D’Apice MR, Nigro V, Casanova J, Graziani G, Acampora D, Avantaggiato V (1994) Orthopedia, a novel gene homeobox-containing gene expressed in the developing central nervous system of both mouse and Drosophila. Neuron 13: 83

    Article  PubMed  CAS  Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14: 1395–1412

    PubMed  CAS  Google Scholar 

  • Stoykova A, Fritsch R, Walther C, Gruss P (1996) Forebrain patterning defects in small eye mutant mice. Development 122: 3453–3465

    PubMed  CAS  Google Scholar 

  • Swanson LW (1992) Brain Maps: Structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Tello JF (1934) Les differenciations neurofibrillaires dans le prosencephale de la souris de 4 a 15 millimetres. Tray Lab Rech Biol 29: 339–396

    Google Scholar 

  • Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zalc B (1991) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15: 1012–1024

    Google Scholar 

  • Uchikawa M, Kamachi Y, Kondo H (1999) Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech Dev 84: 103–120

    Article  PubMed  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Ergeb Anat Entwicklungsgesch 41: 1–88

    Google Scholar 

  • Zakin LD, Mazan S, Maury M, Martin N, Guenet JL, Brulet P (1998) Structure and expression of Wnt13, a novel mouse Wnt2 related gene. Mech Dev 73: 107–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez, S., Puelles, L. (2000). Neurogenetic Compartments of the Mouse Diencephalon and some Characteristic Gene Expression Patterns. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics