Skip to main content

Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bajic VP, Spremo-Potparevic B, Zivkovic L, Bonda DJ, Siedlak SL, Casadesus G, Lee HG, Smith MA (2009) The X-chromosome instability phenotype in Alzheimer’s disease: a clinical sign of accelerating aging? Med Hypotheses 73:917–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonda DJ, Bajic VP, Spremo-Potparevic B, Casadesus G, Zhu X, Smith MA, Lee HG (2010) Cell cycle aberrations and neurodegeneration: a review. Neuropathol Appl Neurobiol 36:157–163

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Lee HG, Siedlak SL, Nunomura A, Hayashi T, Nakamura M, Zhu X, Perry G, Smith MA (2009) Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J Alzheimers Dis 18:447–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  CAS  PubMed  Google Scholar 

  • Ding XL, Husseman J, Tomashevski A, Nochlin D, Jin LW, Vincent I (2000) The cell cycle Cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer’s disease. Am J Pathol 157:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Evans TA, Raina AK, Delacourte A, Aprelikova O, Lee HG, Zhu X, Perry G, Smith MA (2007) BRCA1 may modulate neuronal cell cycle re-entry in Alzheimer disease. Int J Med Sci 4:140–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  CAS  PubMed  Google Scholar 

  • Haapasalo A, Viswanathan J, Bertram L, Soininen H, Tanzi RE, Hiltunen M (2010) Emerging role of Alzheimer’s disease-associated ubiquilin-1 in protein aggregation. Biochem Soc Trans 38:150–155

    Article  CAS  PubMed  Google Scholar 

  • Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 854:328–335

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Shishido N, Nakayama K, Nunomura A, Smith MA, Perry G, Nakamura M (2007) Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-beta peptide. Free Radic Biol Med 43:1552–1559

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Ortega K, Ferrera P, Arias C (2007) Sequential expression of cell-cycle regulators and Alzheimer’s disease-related proteins in entorhinal cortex after hippocampal excitotoxic damage. J Neurosci Res 85:1744–1751

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Zaidi T, Thompson CH, Merz PA, Wisniewski HM (1984) Alzheimer paired helical filaments: bulk isolation, solubility, and protein composition. Acta Neuropathol 62:167–177

    Article  CAS  PubMed  Google Scholar 

  • Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Shen J (2008) Presenilins are required for maintenance of neural stem cells in the developing brain. Mol Neurodegener 3:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  • Korenberg JR, Pulst SM, Neve RL, West R (1989) The Alzheimer amyloid precursor protein maps to human chromosome 21 bands q21.105-q21.05. Genomics 5:124–127

    Article  CAS  PubMed  Google Scholar 

  • Kubiak J, Smith MA (2010) Ubiquitin/proteasome system in mitotic and mitotic-like regulation during brain development and pathology. In: Di Napoli M, Wojcik C (eds) The ubiquitin proteasome system in the central nervous system: from physiology to pathology – 2008 update. Nova Science, Hauppauge, NY, pp 113–130

    Google Scholar 

  • Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Casadesus G, Nunomura A, Zhu X, Castellani RJ, Richardson SL, Perry G, Felsher DW, Petersen RB, Smith MA (2009) The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. Am J Pathol 174:891–897

    Article  CAS  PubMed  Google Scholar 

  • Lopes JP, Oliveira CR, Agostinho P (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8:97–104

    Article  CAS  PubMed  Google Scholar 

  • McShea A, Harris PL, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 150:1933–1939

    CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, Nakayama K, Hayashi T (2007) Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry 46:12737–12743

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9:1294–1306

    Article  CAS  PubMed  Google Scholar 

  • Ogawa O, Zhu X, Lee HG, Raina A, Obrenovich ME, Bowser R, Ghanbari HA, Castellani RJ, Perry G, Smith MA (2003) Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol 105:524–528

    CAS  PubMed  Google Scholar 

  • Raina AK, Zhu X, Rottkamp CA, Monteiro M, Takeda A, Smith MA (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J Neurosci Res 61:128–133

    Article  CAS  PubMed  Google Scholar 

  • Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol 101:305–310

    CAS  PubMed  Google Scholar 

  • Robakis NK (2010) Are Abeta and its derivatives causative agents or innocent bystanders in AD? Neurodegener Dis 7:32–37

    Article  CAS  PubMed  Google Scholar 

  • Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277:1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Casadesus G, Joseph JA, Perry G (2002) Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 33:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Smith MA (2006) Oxidative stress and iron imbalance in Alzheimer disease: how rust became the fuss! J Alzheimers Dis 9:305–308

    CAS  PubMed  Google Scholar 

  • Sousa M, Barros A, Silva J, Tesarik J (1997) Developmental changes in calcium content of ultrastructurally distinct subcellular compartments of preimplantation human embryos. Mol Hum Reprod 3:83–90

    Article  CAS  PubMed  Google Scholar 

  • Spremo-Potparevic B, Zivkovic L, Djelic N, Plecas-Solarovic B, Smith MA, Bajic V (2008) Premature centromere division of the X chromosome in neurons in Alzheimer’s disease. J Neurochem 106:2218–2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, Pronzato MA, Danni O, Smith MA, Perry G, Tabaton M (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10:279–288

    Article  CAS  PubMed  Google Scholar 

  • Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M (2005) Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 92:628–636

    Article  CAS  PubMed  Google Scholar 

  • Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, Muraca G, Danni O, Zhu X, Smith MA, Perry G, Jo DG, Mattson MP, Tabaton M (2008) Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. J Neurochem 104:683–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan Z, Sun X, Hou FS, Oh HW, Hilgenberg LG, Hol EM, van Leeuwen FW, Smith MA, O’Dowd DK, Schreiber SS (2007) Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ 14:1721–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tank EM, True HL (2009) Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet 5:e1000382

    Article  PubMed Central  PubMed  Google Scholar 

  • Thakur A, Wang X, Siedlak SL, Perry G, Smith MA, Zhu X (2007) c-Jun phosphorylation in Alzheimer disease. J Neurosci Res 85:1668–1673

    Article  CAS  PubMed  Google Scholar 

  • Udvardy A (1996) The role of controlled proteolysis in cell-cycle regulation. Eur J Biochem 240:307–313

    Article  CAS  PubMed  Google Scholar 

  • Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 17:3588–3598

    CAS  PubMed  Google Scholar 

  • Vincent I, Zheng JH, Dickson DW, Kress Y, Davies P (1998) Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging 19:287–296

    Article  CAS  PubMed  Google Scholar 

  • Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin L (2001) Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer’s disease. Neuroscience 105:639–650

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ogawa O, Wang Y, Perry G, Smith MA (2003) JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer’s disease. J Neurochem 85:87–93

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Raina AK, Perry G, Smith MA (2004a) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3:219–226

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang Y, Ogawa O, Lee HG, Raina AK, Siedlak SL, Harris PL, Fujioka H, Shimohama S, Tabaton M, Atwood CS, Petersen RB, Perry G, Smith MA (2004b) Neuroprotective properties of Bcl-w in Alzheimer disease. J Neurochem 89:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772:494–502

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Siedlak SL, Wang Y, Perry G, Castellani RJ, Cohen ML, Smith MA (2008) Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol Appl Neurobiol 34:457–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by the National Institutes of Health (AG031364 and AG028679 to MAS). JZK was supported by grants from ARC and LCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-gon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moh, C., Kubiak, J.Z., Bajic, V.P., Zhu, X., Smith, M.A., Lee, Hg. (2011). Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_23

Download citation

Publish with us

Policies and ethics