Skip to main content

Masking by Noise in Acoustic Insects: Problems and Solutions

  • Chapter
  • First Online:
Book cover Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

In most environments, acoustic signals of insects are a source of high background noise levels for many birds and mammals, but at the same time, their own communication channel is noisy due to conspecific and heterospecific signalers as well. In this chapter, I first demonstrate how this situation influences communication and the evolution of related traits at the population level. Solutions for communicating under noise differ between insect taxa, because their hearing system evolved independently many times, and the signals vary strongly in the time and frequency domain. After describing some solutions from the senders’ point of view the focus of the chapter is on properties of the sensory and central nervous system, and how these properties enable receivers to detect relevant acoustic events from irrelevant noise, and to discriminate between signal variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AmĂ©zquita A, Castellanos L, Hödl W (2005) Auditory masking of male Epipedobates femoralis (Anura: Dendrobatidae) under field conditions. Anim Behav 70:1377–1386

    Google Scholar 

  • AmĂ©zquita A, Hödl W, Lima AP, Castellanos L, Erdtmann L, De AraĂşjo MC (2006) Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution 60:1874–1887

    PubMed  Google Scholar 

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Google Scholar 

  • Alexander AJ, van Staaden MJ (1989) Alternative sexual tactics in male bladder grasshoppers (Orthoptera, Pneumoridae). In: Bruton MN (ed) Alternative life-history styles of animals. Kluwer Academic Publishers, Dordrecht, pp 261–277

    Google Scholar 

  • Altes RA, Anderson GM (1980) Binaural estimation of cross-range velocity and optimum escape manoeuvres by moths. In: Busnel RG, JF Fish (eds) Animal sonar systems. Plenum, New York, pp 851–852

    Google Scholar 

  • Arak A, Eiriksson T (1992) Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation. Behav Ecol Sociobiol 30:365–372

    Google Scholar 

  • Baden T, Hedwig B (2007) Neurite specific Ca2+-dynamics underlying sound processing in an auditory interneurone. J Neurobiol 67:68–80

    CAS  Google Scholar 

  • Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174

    Google Scholar 

  • Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353

    Google Scholar 

  • Bateson M, Healy SD (2005) Comparative evaluation and its implication for mate choice. Trends Ecol Evol 20:659–664

    PubMed  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviourists study it? J Comp Psychol 122:235–251

    PubMed Central  PubMed  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Phil Trans Roy Soc B 353:407–419

    Google Scholar 

  • Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164:251–258

    CAS  PubMed  Google Scholar 

  • Brumm H, Slabberkoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209

    Google Scholar 

  • Buus S (1998) Auditory masking. In: Crocker MJ (ed) Handbook of acoustics. Wiley, New York, pp 1147–1165

    Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595

    PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle D (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 701–730

    Google Scholar 

  • Castellano S (2009) Towards an information-processing theory of mate choice. Anim Behav 78:1493–1497

    Google Scholar 

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334

    Google Scholar 

  • Diwakar S, Balakrishnan R (2006) The assemblage of acoustically communicating crickets of a tropical evergreen forest in southern India: call diversity and diel calling patterns. Int J Anim Sound Record 16:1–23

    Google Scholar 

  • Diwakar S, Balakrishnan R (2007) Vertical stratification in an acoustically communicating ensiferan assemblage of a tropical evergreen forest in southern India. J Tropical Ecol 23:479–486

    Google Scholar 

  • Dobler S, Stumpner A, Heller K-G (1994) Sex-specific spectral tuning for the partner´s song in the duetting bushcricket Ancistrura nigrovittata (Orhtoptera: Phaneropterinae). J Comp Physiol A 175:303–310

    Google Scholar 

  • Donelson NC, van Staaden MJ (2005) Alternate tactics in male bladder grasshoppers Bullacris membracioides (Orgtoptera: Pneumoridae). Behaviour 142:761–778

    Google Scholar 

  • Eggermont JJ, Smith GM (1996) Burst-firing sharpens frequency tuning in primary auditory cortex. NeuroReport 7:753–757

    CAS  PubMed  Google Scholar 

  • Ellinger N, Hödl W (2003) Habitat acoustics of a neotropical lowland forest. Bioacoustics 13:297–321

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153

    Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc B 340:215–225

    CAS  Google Scholar 

  • Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. TREE 13:415–420

    CAS  PubMed  Google Scholar 

  • Faure PA, Hoy RR (2000) Neuroethology of the katydid T-cell. I. Tuning and responses to pure tones. J Exp Biol 203:3225–3242

    CAS  PubMed  Google Scholar 

  • Fenton MB, Portfors CV, Rautenbach IL, Waterman JM (1998) Compromises: sound frequencies used in echolocation by aerial-feeding bats. Can J Zool 76:1174–1182

    Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Google Scholar 

  • Forrest TG, Green DM (1991) Sexual selection and female choice in mole crickets (Scapteriscus: Gryllotalpidae): modelling the effects of intensity and male spacing. Bioacoustics 3:93–109

    Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interactions in a global perspective. In: Fenton MB, Racey PA, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 244–272

    Google Scholar 

  • Fullard JH (1998) The sensory co evolution of moths and bats. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Heidelberg, pp 279–326

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Gogala M, Riede K (1995) Time sharing of song activity by cicadas in Temengor Forest Reserve, Hulu Perak, and in Sabah, Malaysia. Malay Nat J 48:297–305

    Google Scholar 

  • Greenfield MD (1983) Reproductive isolation in clearwing moths (Lepidoptera: Sesiidae): a tropical-temperate comparison. Ecology 64(2):362–375

    Google Scholar 

  • Greenfield MD (1988) Interspecific acoustic interactions among katydids Neoconocephalus: inhibition-induced shifts in diel periodicity. Anim Behav 36:684–695

    Google Scholar 

  • Greenfield MD (1990) Evolution of acoustic communication in the genus Neoconocephalus: discontinuous songs, synchrony, and interspecific interactions. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 71–98

    Google Scholar 

  • Greenfield MD (1994) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. Annu Rev Ecol Syst 25:97–126

    Google Scholar 

  • Greenfield MD, Karandinos MG (1979) Resource partitioning of the sex communication channel in clearwing moths (Lepidoptera: Sesiidae) of Wisconsin. Ecol Monogr 49(4):403–426

    Google Scholar 

  • Greenfield MD, Roizen I (1993) Katydid synchronous chorusing is an evolutionary stable outcome of female choice. Nature 364:618–620

    Google Scholar 

  • Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animals signals. Anim Behav 42:1–14

    Google Scholar 

  • Hartbauer M, Kratzer S, Steiner K, Römer H (2005) Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae: Orthoptera). J Comp Physiol 191:175–188

    Google Scholar 

  • Hartbauer M, Radspieler G, Römer H (2010) Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels. J Exp Biol 213:3036–3046

    PubMed  Google Scholar 

  • Hartbauer M, Siegert ME, Fertschai I, Römer H (2012) Acoustic signal perception in a noisy habitat: lessons from synchronising insects. J Comp Physiol A. doi:10.1007/s00359-012-0718-1

  • Hedrick AV (1986) Female preference for male calling bout duration in a field cricket. Behav Ecol Sociobiol 19:73–77

    Google Scholar 

  • Hedwig B, Pollack GS (2008) Invertebrate auditory pathways. In: Basbaum AI, Akimichi K, Shepard GM, Westheiner G (eds) Invertebrate auditory pathways. The senses: a comprehensive reference. Dallos P, Oertel D. Academic Press, San Diego, pp 525–564

    Google Scholar 

  • Heller KG (1988) Zur Bioakustik der Europäischen Laubheuschrecken. Josef Margraf, Weikersheim

    Google Scholar 

  • Heller KG, von Helversen D (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198

    Google Scholar 

  • von Helversen D (1984) Parallel processing in auditory pattern recognition and directional analysis by the grasshopper Chorthippus biguttulus L. (Acrididae). J Comp Physiol A 154:837–846

    Google Scholar 

  • von Helversen D, von Helversen O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing. J Comp Physiol 177:767–774

    Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 115–129

    Google Scholar 

  • Huber F, Kleindienst H-U, Moore TE, Schildberger K, Weber T (1990) Acoustic communication in periodical cicadas: neuronal responses to songs of sympatric species. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhäuser, Basel, pp 217–228

    Google Scholar 

  • Jacobs K, Otte B, Lakes-Harlan R (1999) Tympanal receptor cells of Schistocerca gregaria: correlation of soma positions and dendrite attachment sites, central projections and physiologies. J Exp Zool 283:270–285

    Google Scholar 

  • Johnstone RA (1997) The evolution of animal signals. In: Krebs JR, Davies NB (eds) Behavioural ecology. An evolutionary approach. Blackwell Science, Oxford, pp 155–178

    Google Scholar 

  • Klump GM (1996) Bird communication in a noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. University Press, Ithaca, pp 321–338

    Google Scholar 

  • Kostarakos K, Rheinlaender J, Römer H (2007) Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera). III. Peripheral directionality and central nervous spatial cues. J Comp Physiol A 193:1115–1123

    Google Scholar 

  • Kostarakos K, Hennig M, Römer H (2009) Two matched filters and the evolution of mating signals in four species of cricket. Frontiers Zool 6:22

    Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 24:10731–10740

    Google Scholar 

  • Keuper A, KĂĽhne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans. II. Transmission of air-borne sound and vibration signals in the biotope. Behav Proc 5:55–74

    Google Scholar 

  • Lang A, Teppner I, Hartbauer M, Römer H (2005) Predation and noise in communication networks of neotropical katydids. In: McGregor P (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 152–169

    Google Scholar 

  • Latimer W, Schatral A (1983) The acoustic behaviour of the bushcricket Tettigonia cantans. I. Behavioural responses to sound and vibration. Behav Proc 8:113–124

    Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169:507–514

    CAS  PubMed  Google Scholar 

  • Mason AC, Morris GK, Hoy RR (1999) Peripheral frequency mismatch in the primitive ensiferan Cyphoderris monstrosa (Orthopterea: Haglidae). J Comp Physiol 184:543–551

    CAS  Google Scholar 

  • Madsen BM, Miller LA (1987) Auditory input to motor neurones of the dorsal longitudinal flight muscles of the noctuid moth (Barathra brassicae L.). J Comp Physiol A 160:23–31

    Google Scholar 

  • Marsat G, Pollack G (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26:10542–10547

    CAS  PubMed  Google Scholar 

  • Metzner W, Koch C, Wessel R, Gabbiani F (1998) Feature extraction by burst-like spike patterns in multiple sensory maps. J Neurosci 18:2283–2300

    CAS  PubMed  Google Scholar 

  • Miller LA, Olesen J (1979) Avoidance behaviour in green lacewings. I. Behaviour of free flying green lacewings to hunting bats and ultrasound. J Comp Physiol A 131:113–120

    Google Scholar 

  • Miller CT, Bee MA (2012) Receiver psychology turns 20: is it time for a broader approach? Anim Behav 83:331–343

    PubMed Central  PubMed  Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering response of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris GK, Mason AC, Wall P (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool Lond 233:129–163

    Google Scholar 

  • Møller AP, Pominakowski A (1993) Why have birds got multiple sexual ornaments? Behav Ecol Sociobiol 32:167–176

    Google Scholar 

  • Paez VP, Bock BC, Rand AS (1993) Inhibition of evoked calling of Dendrobates pumilio due to acoustic interference from cicada calling. Biotropica 25(2):242–245

    Google Scholar 

  • Parker GA (1983) Mate quality and mating decisions. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 141–164

    Google Scholar 

  • Payne RS, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31

    CAS  PubMed  Google Scholar 

  • Pfeiffer M, Hartbauer M, Lang AB, Maass W, Römer H (2012) Probing real sensory worlds with unsupervised clustering. PLoS ONE 7:e37354

    Google Scholar 

  • Pollack GS (1986) Discrimination of calling song models by the cricket, Teleogryllus oceanicus: the influence of sound direction on neural coding of the stimulus temporal pattern and on phonotactic behaviour. J Comp Physiol 158:549–561

    Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    CAS  PubMed  Google Scholar 

  • Pollack GS (1998) Neural processing of acoustic signals. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 139–196

    Google Scholar 

  • Pollack GS (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767

    CAS  PubMed  Google Scholar 

  • Popov AV, Shuvalov VF (1977) Phonotactic behaviour of crickets. J Comp Physiol A 119:111–126

    Google Scholar 

  • Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876

    CAS  PubMed  Google Scholar 

  • Rheinlaender J, Römer H (1986) Insect hearing in the field. I. The use of identified nerve cells as “biological microphones”. J Comp Physiol 158:647–651

    Google Scholar 

  • Riede K (1986) Modification of the courtship song by visual stimuli in the grasshopper Gomphocerus rufus (Acrididae). Physiol Entomol 11:61–74

    Google Scholar 

  • Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296

    Google Scholar 

  • Robillard T, Grandcolas P, Desutter-Grandcolas L (2007) A shift toward harmonics for high-frequency calling shown with phylogenetic study of frequency spectra in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae). Can J Zool 85:1264–1275

    Google Scholar 

  • Robinson D, Rheinlaender J, Hartley JC (1986) Temporal parameters of male-female sound communication in Leptophyes punctatissirna. Physiol Entomol 11:317–323

    Google Scholar 

  • Roeder KD (1964) Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats. J Insect Physiol 10:529–546

    Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Roeder KD, Treat AE (1962) The acoustic detection of bats by moths. In: Proceedings of the 11th international entomological conference, Wien, vol 3, pp 7–11

    Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122

    Google Scholar 

  • Römer H (1992) Ecological constraints for the evolution of hearing and sound communication in insects. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 79–93

    Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer handbook of auditory research. Springer, New York, pp 63–96

    Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Google Scholar 

  • Römer H, Bailey W (1998) Strategies for hearing in noise: peripheral control over auditory sensitivity in the bushcricket Sciarasaga quadrata (Austrosaginae: Tettigoniidae). J Exp Biol 201:1023–1033

    PubMed  Google Scholar 

  • Römer H, Bailey WJ, Dadour I (1989) Insect hearing in the field. III. Masking by noise. J Comp Physiol 164:609–620

    Google Scholar 

  • Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). J Comp Physiol A 186:181–191

    PubMed  Google Scholar 

  • Römer H, Lang A, Hartbauer M (2010) The signaller’s dilemma: a cost–benefit analysis of public and private communication. PLoS ONE e13325

    Google Scholar 

  • Ronacher B, Krahe R (1998) Song recognition in the grasshopper Chorthippus biguttulus is not impaired by shortening song signals: implications for neural encoding. J Comp Physiol A 183:729–735

    Google Scholar 

  • Ronacher B, Hoffmann C (2003) Influence of amplitude-modulated noise on the recognition of communication signals in the grasshopper Chorthippus biguttulus. J Comp Physiol A 189:419–425

    CAS  Google Scholar 

  • Ronacher B, Krahe R, Hennig RM (2000) Effects of signal duration on the recognition of masked communication signals by the grasshopper Chorthippus biguttulus. J Comp Physiol A 186:1065–1072

    CAS  PubMed  Google Scholar 

  • Ronacher B, Franz A, Wohlgemuth S, Hennig R (2004) Variability of spike trains and the processing of temporal patterns of acoustic signals—problems, constraints, and solutions. J Comp Physiol A 190:257–277

    CAS  Google Scholar 

  • Ryan MJ, Brenowitz EA (1985) The role of body size, phylogeny and ambient noise in the evolution of bird song. Am Nat 126:87–100

    Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional pattern of female mate choice and the role of sensory biases. Am Nat 139:S4–S35

    Google Scholar 

  • Ryan MJ, Akre KI, Kirkpatrik M (2007) Mate choice (primer). Curr Biol 17:313–316

    Google Scholar 

  • Samarra FIP, Klappert K, Brumm H, Miller PJO (2009) Background noise constrains communication: acoustic masking of courtship signals in the fruit fly Drosophila montana. Bahaviour 146:1635–1648

    Google Scholar 

  • Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    PubMed  Google Scholar 

  • Schmidt AKD, Römer H (2011) Solutions to the cocktail party problem in insects: selective filters, spatial release from masking and gain control in tropical crickets. PLoS ONE 6(12):e28593. doi:10.1371/journal.pone.0028593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schul J, von Helversen D, Weber T (1998) Selective phonotaxis in Tettigonia cantans and T. viridissima in song recognition and discrimination. J Comp Physiol A 182:687–694

    Google Scholar 

  • Schul J, Matt F, von Helversen O (2000) Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Proc Roy Soc Lond 267:1711–1715

    CAS  Google Scholar 

  • Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138:1–4

    CAS  PubMed  Google Scholar 

  • Sismondo E (1990) Synchronous, alternating, and phase-locked stridulation by a tropical katydid. Science 249:55–58

    CAS  PubMed  Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826

    CAS  PubMed  Google Scholar 

  • Sueur J (2002) Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biol J Linn Soc 75:379–394

    Google Scholar 

  • van Staaden MJ, Römer H (1997) Sexual signalling in bladder grashoppers: tactical design for maximizing calling range. J Exp Biol 200:2597–2608

    PubMed  Google Scholar 

  • Stumpner A, Allen GR, Lakes-Harlan R (2007) Hearing and frequency dependence of auditory interneurons in the parasitoid fly Homotrixa alleni (Tachinidae: Ormiini). J Comp Physiol A 193:1113–1125

    Google Scholar 

  • Thiele DR, Bailey WJ (1980) The function of sound in male spacing behavior of buschcrickets (Tettigoniidae: Orthoptera). Aust J Ecol 5:275–286

    Google Scholar 

  • Walker TJ (1969) Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166:891–894

    CAS  PubMed  Google Scholar 

  • Waters DA (1996) The peripheral auditory characteristics of noctuid moths: information encoding and endogenous noise. J Exp Biol 199:857–868

    PubMed  Google Scholar 

  • Waters DA, Jones G (1994) Wingbeat-generated ultrasound in noctuid moths increases the discharge rate of the bat-detecting A1 cell. Proc R Soc Lond B 258:41–46

    Google Scholar 

  • Wehner R (1989) “Matched filters”—neural models of the external world. J Comp Physiol A 161:511–531

    Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544

    CAS  PubMed  Google Scholar 

  • Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47:380–400

    CAS  PubMed  Google Scholar 

  • Zelick R, Narins PM (1985) Characterization of the advertisement call oscillator in the frog Eleutherodacytylus coqui. J Comp Physiol 156:223–229

    Google Scholar 

  • Zhantiev RD, Dubrovin NN (1977) Sound communication in the genus Isophya (Orthoptera, Tettigoniidae) (in Russian). Zool Zurnal 56:40–51

    Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Quart Rev Biol 73:415–438

    Google Scholar 

Download references

Acknowledgments

I acknowledge the comments of Mark Bee, Henrik Brumm and an anonymous reviewer, which greatly improved the chapter. My own research on the sensory ecology of acoustic communication in insects was strongly influenced by collaboration with JĂĽrgen Rheinlaender and Win Bailey, who focused my interest on field work and evolutionary aspects of acoustic signaling and hearing. I also thank M. van Staaden, G.K. Morris, I. Dadour, and D. Gwynne for numerous discussions during our field work. Own research for this article was supported by grants from the Austrian Science Foundation FWF, projects P09523-BIO and P20882-B09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Römer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Römer, H. (2013). Masking by Noise in Acoustic Insects: Problems and Solutions. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_3

Download citation

Publish with us

Policies and ethics