Skip to main content

Structure and Function of Histone H2AX

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair. The most well known of these is a specific serine at the extreme C-terminus of H2AX which is phosphorylated by Phosphoinositide-3-Kinase-related protein Kinases (PIKKs) to generate the γH2AX mark. However, recent studies have demonstrated that phosphorylation, ubiquitylation and other post-translational modifications are also crucial for function. H2AX transcript properties suggest a capability to respond to damage events. Furthermore, the biochemical properties of H2AX protein within the nucleosome structure and its distribution within chromatin also point to features linked to its role in the DNA damage response. In particular, the theoretical inter-nucleosomal spacing of H2AX and the potential implications of amino acid residues distinguishing H2AX from canonical H2A in structure and dynamics are considered in detail. This review summarises current understanding of H2AX from a structure–function perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DSB:

double strand break

DDR:

DNA damage response

HDE:

histone downstream element

HR:

homologous recombination

IR:

ionising radiation

NHEJ:

non-homologous end joining

PIKK:

phosphoinositide-3-kinase-related protein kinase

PTM:

post-translation modification

SHL:

superhelical location

SLBP:

stem–loop binding protein

snRNA:

small nuclear RNA

TSS:

transcription start site

References

  • Adams, M. M., Wang, B., Xia, Z., Morales, J. C., Lu, X., Donehower, L. A., Bochar, D. A. and Elledge, S. J., and Carpenter, P. B. (2005) 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle, 4(12), 1854–1861.

    Article  CAS  PubMed  Google Scholar 

  • Aihara, H., Nakagawa, T., Yasui, K., Ohta, T., Hirose, S., Dhomae, N., Takio, K., Kaneko, M., Takeshima, Y., Muramatsu, M., Ito, T. (2004) Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev., 18, 877–888.

    Article  CAS  PubMed  Google Scholar 

  • Ausió, J. (2006) Histone variants-the structure behind the function. Brief Funct Genomic Proteomic, 5(3), 228–243.

    Article  PubMed  Google Scholar 

  • Ayoub, N., Jeyasekharan, A. D., Bernal, J. A., and Venkitaraman, A. R. (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453, 682–686.

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist, C. J. and Kastan, M. B. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Bassing, C. H. and Alt, F. W. (2004) H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle, 3(2), 149–153.

    CAS  PubMed  Google Scholar 

  • Bewersdorf, J., Bennett, B. T., and Knight, K. L. (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. PNAS, 103(48), 18137–18142.

    Article  CAS  PubMed  Google Scholar 

  • Bonenfant, D., Coulot, M., Towbin, H., Schindler, P. and van Oostrum, J. (2006) Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics, 5(3), 541–552.

    CAS  PubMed  Google Scholar 

  • Botuyan, M. V., Lee, J., Ward, I. M., Kim, J.-E., Thompson, J. R., Chen, J., and Mer, G. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 127, 1361–1373.

    Article  CAS  PubMed  Google Scholar 

  • Burma, S. and Chen, D. J. (2004) Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair, 3, 909–918.

    Article  CAS  PubMed  Google Scholar 

  • Celeste, A., Difilippantonio, S., Difilippantonio, M. J., Fernandez-Capetillo, O., Pilch, D. R., Sedelnikova, O. A., Eckhaus, M., Ried, T., Bonner, W. M., and Nussenzweig, A. (2003a) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell, 114, 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., Pilch, D. R., Staudt, D. W., Lee, A., Bonner, R. F., Bonner, W. M., and Nussenzweig, A. (2003b) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology, 5(7), 675–679.

    Article  CAS  PubMed  Google Scholar 

  • Celeste, A., Petersen, S., Romanienko, P. J., Fernandez-Capetillo, O., Chen, H. T., Sedelnikova, O. A., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M. J., Redon, C., Pilch, D. R., Olaru, A., Eckhaus, M., Camerini-Otero, R. D., Tessarollo, L., Livak, F., Manova, K., Bonner, W. M. , Nussenzweig, M. C, and Nussenzweig, A. (2002) Genomic instability in mice lacking histone H2AX. Science, 296, 922–927.

    Article  CAS  PubMed  Google Scholar 

  • Chew, Y. C., Camporeale, G., Kothapalli, N., Sarath, G., and Zempleni, J. (2006) Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem, 17, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, D., Keogh, M.-C., Ishii, H., Peterson, C. L., Buratowski, S., and Lieberman, J. (2005) Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell, 20, 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, D., Xu, X., Zhong, X., Ahmed, F., Zhong, J., Liao, J., Dykxhoorn, D. M., Weinstock, D. M., Pfeifer, G. P., and Lieberman, J. (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol. Cell, 31(1), 33–46.

    Article  CAS  PubMed  Google Scholar 

  • Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., and Rosenfeld, M. G. (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature, 458, 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Cowell, I. G., Sunter, N. J., Singh, P. B., Austin, C. A., Durkacz, B. W., and Tilby, M. J. (2007) Gamma-H2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE, 2(10), e1057

    Article  PubMed  Google Scholar 

  • Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator. Genome Res 14, 1188–1190.

    Article  CAS  PubMed  Google Scholar 

  • Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution. J Mol Biol, 319, 1097–1113.

    Article  CAS  PubMed  Google Scholar 

  • DeLano, W. (2002) The PyMOL Molecular Graphics System. on World Wide Web http://www.pymol.org.

  • Difilippantonio, S., Gapud, E., Wong, N., Huang, C.-Y., Mahowald, G., Chen, H. T., Kruhlak, M. J., Callen, E., Livak, F., Nussenzweig, M. C., Sleckman, B. P., and Nussenzweig, A. (2008) 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature, 456, 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova, N., Chen, Y.-C. M., Spector, D. L., and de Lange, T. (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature, 456, 524–528.

    Article  CAS  PubMed  Google Scholar 

  • Downs, J. A., Lowndes, N. F., and Jackson, S. P. (2000) A role for saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408, 1001–1004.

    Article  CAS  PubMed  Google Scholar 

  • Downs, J. A., Nussenzweig, M. C., and Nussenzweig, A. (2007) Chromatin dynamics and the preservation of genetic information. Nature, 447, 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Du, L.-L., Moser, B. A., and Russell, P. (2004) Homo-oligomerization is the essential function of the tandem BRCT domains in the checkpoint protein Crb2. Biol Chem, 279(37), 38409–38414.

    Article  CAS  Google Scholar 

  • Eliezer, Y., Argaman, L., Rhie, A., Doherty, A. J., and Goldberg, M. (2009) The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage. J Biol Chem, 284(1), 426–435.

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld, G. and Groudine, M. (2003) Controlling the double helix. Nature, 421, 448–453.

    Article  PubMed  Google Scholar 

  • Fernandez-Capetillo, O., Chen, H.-T., Celeste, A., Ward, I., Romanienko, P. J., Morales, J. C., Naka, K., Xia, Z., Camerini-Otero, R. D., Motoyama, N., Carpenter, P. B., Bonner, W. M., Chen, J., and Nussenzweig, A. (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 4, 993–997.

    Article  CAS  PubMed  Google Scholar 

  • Fink, M., Imholz, D., and Thoma, F. (2007) Contribution of the serine 129 of histone H2A to chromatin structure. Mol. Cell. Biol, 27(10), 3589–3600.

    Article  CAS  PubMed  Google Scholar 

  • Georgiev, O. and Birnstiel, M. L. (1985) The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3′ termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J, 4(2), 481–489.

    CAS  PubMed  Google Scholar 

  • Goodarzi, A. A., Noon, A. T., Deckbar, D., Ziv, Y., Shiloh, Y., Löbrich, M., and Jeggo, P. A. (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell, 31, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Grenon, M., Costelloe, T., Jimeno, S., O’Shaughnessy, A., FitzGerald, J., Zgheib, O., Degerth, L., and Lowndes, N. F. (2007) Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. Yeast, 24, 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Hammet, A., Magill, C., Heierhorst, J., and Jackson, S. P. (2007) Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep, 8(9), 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Harris, M. E., Böhni, R., Schneiderman, M. H., Ramamurthy, L., Schümperli, D., and Marzluff, W. F. (1991) Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol Cell Biol, 11(5), 2416–2424.

    CAS  PubMed  Google Scholar 

  • Heo, K., Kim, H., Choi, S. H., Choi, J., Kim, K., Gu, J., Lieber, M. R., Yang, A. S., and An, W. (2008). FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-Ribosylation of Spt16. Mol. Cell, 30, 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Huyen, Y., Zgheib, O., DiTullio, R. A., Jr. Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature, 432(7015), 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Ikura, T., Tashiro, S., Kakino, A., Shima, H., Jacob, N., Amunugama, R., Yoder, K., Izumi, S., Kuraoka, I., Tanaka, K., Kimura, H., Ikura, M., Nishikubo, S., Ito, T., Muto, A., Miyagawa, K., Takeda, S., Fishel, R., Igarashi, K., and Kamiya, K. (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol, 27(20), 7028–7040.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, V. S., Hatch, C. L., and Bonner, W. M. (1994a) Characterization of the human histone H2A.X gene. Comparison of its promoter with other H2A gene promoters. J Biol Chem, 269(39), 24189–24194.

    CAS  PubMed  Google Scholar 

  • Ivanova, V. S., Zimonjic, D., Popescu, N., and Bonner, W. M. (1994b) Chromosomal localization of the human histone H2A.X gene to 11q23.2-q23.3 by fluorescence in situ hybridization. Hum Genet, 94(3), 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Keogh, M.-C., Kim, J.-A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J. C., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., and Krogan, N. J. (2006) A phosphatase complex that dephosphorylates gamma-H2AX regulates DNA damage checkpoint recovery. Nature, 439, 497–501.

    Article  CAS  PubMed  Google Scholar 

  • Kilkenny, M. L., Doré, A. S., Roe, S. M., Nestoras, K., Ho, J. C.Y., Watts, F. Z., and Pearl, L. H. (2008) Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev, 22, 2034–2047.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H., Takizawa, N., Allemand, E., Hori, T., Iborra, F. J., Nozaki, N., Muraki, M., Hagiwara, M., Krainer, A. R., Fukagawa, T., and Okawa, K. (2006) A novel histone exchange factor, protein phosphatase 2C gamma, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol, 175(3), 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Kruhlak, M. J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Müller, W. G., McNally, J. G., Bazett-Jones, D. P., and Nussenzweig, A. (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol, 172(6), 823–834.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. S., Edwards, R. A., Thede, G. L., and Glover, J. N. M. (2005) Structure of the BRCT repeat domain of MDC1 and its specificity for the free COOH-terminal end of the gamma-H2AX histone tail. J. Biol Chem, 280(37), 32053–32056.

    Article  CAS  PubMed  Google Scholar 

  • Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Lukas, C., Melander, F., Stucki, M., Falck, J., Bekker-Jensen, S., Goldberg, M., Lerenthal, Y., Jackson, S. P., Bartek, J., and Jiri, L. (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J, 23, 2674–2683.

    Article  CAS  PubMed  Google Scholar 

  • Madigan, J. P., Chotkowski, H. L., and Glaser, R. L. (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res, 30(17), 3698–3705.

    Article  CAS  PubMed  Google Scholar 

  • Malik, H. S. and Henikoff, S. (2003). Phylogenomics of the nucleosome. Nat Struct Biol, 10(11), 882–891.

    Article  CAS  PubMed  Google Scholar 

  • Mannironi, C., Bonner, W. M., and Hatch, C. L. (1989) H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3′ processing signals. Nucleic Acids Res, 17(22), 9113–9126.

    Article  CAS  PubMed  Google Scholar 

  • Marzluff, W. F., Gongidi, P., Woods, K. R., Jin, J., and Maltais, L. J. (2002) The human and mouse replication-dependent histone genes. Genomics, 80, 487–498.

    Article  CAS  PubMed  Google Scholar 

  • McKinnon, P. J. and Caldecott, K. W. (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet, 8, 35–55.

    Article  Google Scholar 

  • Monen, J., Maddox, P. S., Hyndman, F., Oegema, K., and Desai, A. (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol, 7, 1248–1255.

    Article  PubMed  Google Scholar 

  • Morgenstern, B.(1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics, 15(3), 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Panier, S. and Durocher, D. (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair, 8(4), 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Pantazis, P. and Bonner, W. M. (1981) Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem, 256(9), 4669–4675.

    CAS  PubMed  Google Scholar 

  • Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10, 886–895.

    Article  CAS  PubMed  Google Scholar 

  • Pilch, D. R., Sedelnikova, O. A., Redon, C., Celeste, A., Nussenzweig, A., and Bonner, W. M. (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol, 81, 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev, 12, 162–169.

    Article  CAS  PubMed  Google Scholar 

  • Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: The european molecular biology open software suite. Trends Genet, 16(6), 276–277.

    Article  CAS  PubMed  Google Scholar 

  • Rios-Doria, J., Velkova, A., Dapic, V., Galáan-Caridad, J. M., Dapic, V., Carvalho, M. A., Melendez, J., and Monteiro, A. N. A. (2009) Ectopic expression of histone H2AX mutants reveals a role for its post-translational modifications. Cancer Biol Ther, 8(5), 422–434.

    CAS  PubMed  Google Scholar 

  • Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol., 146(5), 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 273(10), 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm, K., Krüger, I., Thompson, L. H., and Löbrich, M. (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol, 23(16), 5706–5715.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, S. L., Portoso, M., Mata, J., Bähler, J., Allshire, R. C., and Kouzarides, T. (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell, 119, 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Shroff, R., Arbel-Eden, A., Pilch, D., Ira, G., Bonner, W. M., Petrini, J. H., Haber, J. E., and Lichten, M. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol, 14, 1703–1711.

    Article  CAS  PubMed  Google Scholar 

  • Soulier, J. and Lowndes, N. F. (1999) The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol, 9(10), 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 123, 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan Jr., W.J., Naguleswaran, A., and Angel, S. O. (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol, 8(12): 1850–1861.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney, F. D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D. F., and Durocher, D. (2005) Saccharomyces cerevisiae Rad9 Acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol, 15(15): 1364–1375.

    Article  CAS  PubMed  Google Scholar 

  • Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J. E., Koshland, D. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell, 16, 991–1002.

    Article  PubMed  Google Scholar 

  • Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., Shiloh, Y. (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J, 22(20), 5612–5621.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. R., Corpina, R. A., and Goldberg, J. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature, 412, 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Ward, I., Kim, J.-E. Minn, K., Chini, C. C., Mer, G., and Chen, J. (2006) The tandem BRCT domain of 53BP1 is not required for its repair function. J Biol Chem, 281(50), 38472–38477.

    Article  CAS  PubMed  Google Scholar 

  • West, M. H. P. and Bonner, W. M. (1980) Histone 2A, a heteromorphous family of eight protein species. Biochemistry, 19(14), 3238–3245.

    Article  CAS  PubMed  Google Scholar 

  • White, C. L., Suto, R. K., and Luger, K. (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J, 20(18), 5207–5218.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, M. L., Zheng, L.-X., Baldwin, A., Ohta, T., Hurt, M. M., and Marzluff, W. F. (2000) Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol, 20(12), 4188–4198.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, A., Li, H., Shechter, D., Ahn, S. H., Fabrizio, L. A., Erdjument-Bromage, H., Ishibe-Murakami, S., Wang, B., Tempst, P., Hofmann, K., Patel, D. J., Elledge, S., J., and Allis, C. D. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature, 457, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Eugeni, E. E., Parthun, M. R., and Freitas, M. A. (2003) Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma, 112, 77–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Cathal Seoighe for assistance with calculations of random H2AX distribution, Prof. Noel Lowndes for his input and Dr. Kevin Roche for helpful discussions. We gratefully acknowledge the support of Science Foundation Ireland and Health Research Board of Ireland for supporting work in our laboratory. DMSP acknowledges the support of the Portuguese Foundation for Science and Technology (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Flaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pinto, D.M.S., Flaus, A. (2010). Structure and Function of Histone H2AX. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_4

Download citation

Publish with us

Policies and ethics