Skip to main content

Mitochondria and Reactive Oxygen Species. Which Role in Physiology and Pathology?

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

Oxidative stress is among the major causes of toxicity due to interaction of Reactive Oxygen Species (ROS) with cellular macromolecules and structures and interference with signal transduction pathways. The mitochondrial respiratory chain, specially from Complexes I and III, is considered the main origin of ROS particularly under conditions of high membrane potential, but several other sources may be important for ROS generation, such as mitochondrial p66Shc, monoamine oxidase, α-ketoglutarate dehydogenase, besides redox cycling of redox-active molecules. ROS are able to oxidatively modify lipids, proteins, carbohydrates and nucleic acids in mitochondria and to activate/inactivate signalling pathways by oxidative modification of redox-active factors. Cells are endowed with several defence mechanisms including repair or removal of damaged molecules, and antioxidant systems, either enzymatic or non-enzymatic. Oxidative stress is at the basis of ageing and many pathological disorders, such as ischemic diseases, neurodegenerative diseases, diabetes, and cancer, although the underlying mechanisms are not always completely understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria, Mol. Cell 13:805–815

    CAS  Google Scholar 

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    PubMed  Google Scholar 

  • Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 504:58–69

    Google Scholar 

  • Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420

    PubMed  CAS  Google Scholar 

  • Arroyo A, Navarro F, Navas P, Villalba JM (1998) Ubiquinol regeneration by plasma membrane ubiquinone reductase. Protoplasma 205:107–113

    CAS  Google Scholar 

  • Bai J, Cederbaum AI (2001) Mitochondrial catalase and oxidative injury. Biol Signals Recept 10:189–199

    PubMed  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants and aging. Cell 120:483–495

    PubMed  CAS  Google Scholar 

  • Balazy M, Chemtob S (2008) Trans-arachidonic acids: new mediators of nitro-oxidative stress. Pharmacol Ther 119:275–290

    PubMed  CAS  Google Scholar 

  • Balazy M, Nigam S (2003) Aging, lipid modifications and phospholipases–new concepts. Ageing Res Rev 2:191–209

    PubMed  CAS  Google Scholar 

  • Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed fibroblasts. Biochim Biophys Acta 1797:314–323

    PubMed  CAS  Google Scholar 

  • Barja G (1993) Oxygen radicals, a failure or a success of evolution? Free Radic Res Commun 18:63–70

    PubMed  CAS  Google Scholar 

  • Barja G (2004) Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc 79:235–251

    PubMed  Google Scholar 

  • Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 10:215–223

    PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Grozganovic Z (2000) 6-Hydroxydopamine. In: Spencer PS (ed) Experimental and clinical neurotoxicology. Oxford University Press, New York, pp 659–667

    Google Scholar 

  • Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL (2010) Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 285(15):11445–11457, Epub 11 Feb 2010

    PubMed  CAS  Google Scholar 

  • Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and Coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    PubMed  CAS  Google Scholar 

  • Beckmann JD, Frerman FE (1985) Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry 24:3922–3925

    PubMed  CAS  Google Scholar 

  • Bell EL, Klimova T, Chandel NS (2008) Targeting the mitochondria for cancer therapy: regulation of hypoxia-inducible factor by mitochondria. Antioxid Redox Signal 10:635–640

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm 116:1383–1396

    PubMed  CAS  Google Scholar 

  • Bergamini E (2006) Autophagy: a cell repair mechanism that retards ageing and age-associated diseases and can be intensified pharmacologically. Mol Aspects Med 27:403–410

    PubMed  CAS  Google Scholar 

  • Bernardi P, Petronilli V, Di Lisa F, Forte M (2001) A mitochondrial perspective of cell death. Trends Biochem Sci 26:112–117

    PubMed  CAS  Google Scholar 

  • Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25

    PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  • Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli M, Setti M, Landi L, Lenaz G (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci USA 93:2528–2532

    PubMed  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    PubMed  CAS  Google Scholar 

  • Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas MH, Nistri S, Colucci W, Leducq N, Parini A (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305

    PubMed  CAS  Google Scholar 

  • Bianchi G, Di Giulio C, Rapino C, Antonucci A, Castaldi A (2006) p53 and p66 proteins compete for hypoxia-inducible factor 1 alpha stabilization in young and old rat hearts exposed to intermittent hypoxia. Gerontology 52:17–23

    PubMed  CAS  Google Scholar 

  • Bieschke J, Zhang Q, Bosco DA, Lerner RA, Powers ET, Wentworth P Jr, Kelly JW (2006) Small molecule oxidation products trigger disease-associated protein misfolding. Acc Chem Res 39:611–619

    PubMed  CAS  Google Scholar 

  • Bindoli A, Deeble DJ, Rigobello MP, Galzigna L (1990) Direct and respiratory chain- mediated redox cycling of adrenochrome. Biochim Biophys Acta 1016:349–356

    PubMed  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radic Biol Med 13:391–405

    PubMed  CAS  Google Scholar 

  • Blakely EL, Mitchell AL, Fisher N, Meunier B, Nijtmans LG, Schaefer AM, Jackson MJ, Turnbull DM, Taylor RW (2005) A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast. FEBS J 272:3583–3592

    PubMed  CAS  Google Scholar 

  • Bohlender JM, Franke S, Stein G, Wolf G (2004) Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289:F645–F659

    Google Scholar 

  • Bolter CJ, Chefurka W (1990) Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch Biochem Biophys 278:65–72

    PubMed  CAS  Google Scholar 

  • Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800

    PubMed  CAS  Google Scholar 

  • Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66:6087–6096

    PubMed  CAS  Google Scholar 

  • Borisenko GG, Kapralov AA, Tyurin VA, Maeda A, Stoyanovsky DA, Kagan VE (2008) Molecular design of new inhibitors of peroxidase activity of cytochrome c/cardiolipin complexes: fluorescent oxadiazole-derivatized cardiolipin. Biochemistry 47:13699–13710

    PubMed  CAS  Google Scholar 

  • Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  • Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA (2006) A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 8:1651–1665

    PubMed  CAS  Google Scholar 

  • Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    PubMed  CAS  Google Scholar 

  • Brandt U, Kerscher S, Drose S, Zwicker K, Zickermann V (2003) Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17

    PubMed  CAS  Google Scholar 

  • Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31:577–596

    PubMed  CAS  Google Scholar 

  • Brown GC, Borutaite V (2004) Inhibition of mitochondrial Complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    PubMed  CAS  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress. Exp Gerontol 41:653–657

    PubMed  CAS  Google Scholar 

  • Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787(1):60–67

    PubMed  CAS  Google Scholar 

  • Burtwell LYS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 10:579–599

    Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signalling: the retrograde response. Mol Cell 14:1–15

    PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    PubMed  CAS  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch Biochem Biophys 180:248–257

    PubMed  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    PubMed  CAS  Google Scholar 

  • Carraro F, Pucci A, Pellegrini M, Pelicci PG, Baldari CT, Naldini A (2007) p66Shc is involved in promoting HIF-1-alpha accumulation and cell death in hypoxic T cells. J Cell Physiol 211:439–447

    PubMed  CAS  Google Scholar 

  • Casteilla L, Rigoulet M, Pénicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52:181–188

    PubMed  CAS  Google Scholar 

  • Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109

    PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    PubMed  CAS  Google Scholar 

  • Chen Y, Gibson SB (2008) Is generation of reactive oxygen species a trigger for autophagy? Autophagy 4:246–248

    PubMed  CAS  Google Scholar 

  • Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L (2006a) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25:5391–5404

    PubMed  CAS  Google Scholar 

  • Chiaradonna F, Gaglio D, Vanoni M, Alberghina L (2006b) Expression of transforming K-Ras oncogene affects mitochondrial functions and morphology in mouse fibroblasts. Biochim Biophys Acta 1757:1338–1356

    PubMed  CAS  Google Scholar 

  • Chiueh CC, Miyake H, Peng MT (1993) Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol 60:251–258

    PubMed  CAS  Google Scholar 

  • Cho N, Morré DJ (2009) Early developmental expression of a normally tumour-associated and drug-inhibited cell surface-located NADH oxidase (ENOX2) in non-cancer cells. Cancer Immunol Immunother 58:547–552

    PubMed  CAS  Google Scholar 

  • Conrad M (2009) Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta 1790:1575–1585

    PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation and disease. FASEB J 17:1195–1214

    PubMed  CAS  Google Scholar 

  • Cribb AE, Peynou M, Muruganandan S, Schneider L (2005) The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev 37:405–442

    PubMed  CAS  Google Scholar 

  • Crofts AR (2004) Proton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655:77–92

    PubMed  CAS  Google Scholar 

  • Cruciat CM, Brunner S, Baumann F, Neupert W, Stuart RA (2000) The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem 275:18093–18098

    PubMed  CAS  Google Scholar 

  • D’Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15:2157–2169

    PubMed  Google Scholar 

  • Dalle Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2005) Is there a role for S- glutathionylation of proteins in human disease? IUBMB Life 57:189–192

    PubMed  Google Scholar 

  • Dalle Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Google Scholar 

  • de Souza-Pinto N, Wilson DM III, Stevnsner TV, Bohr VA (2008) Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair 7:1098–1109

    PubMed  Google Scholar 

  • Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    PubMed  CAS  Google Scholar 

  • Di Giovanni S, Mirabella M, Spinazzola A, Crociati P, Silvestri G, Broccolini A, Tonali P, Di Mauro S, Servidei S (2001) Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 57:375–376

    Google Scholar 

  • Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    PubMed  Google Scholar 

  • Di Mauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    Google Scholar 

  • Di Mauro S, Hirano M, Schon EA (eds) (2006) Mitochondrial medicine. Informa Healthcare, London

    Google Scholar 

  • Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881

    PubMed  CAS  Google Scholar 

  • Diplock AT (1994) Antioxidants and disease prevention. Mol Aspects Med 15:293–376

    PubMed  CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    PubMed  CAS  Google Scholar 

  • Donnellan JF, Barker MD, Wood J, Beechey RB (1970) Specificity and locale of the L-3-glycerophosphate-flavoprotein oxidoreductase of mitochondria isolated from the flight muscle of Sarcophaga barbata thoms. Biochem J 120:467–478

    PubMed  CAS  Google Scholar 

  • Drahota Z, Chowdhury SK, Floryk D, Mracek T, Wilhelm J, Rauchova H, Lenaz G, Houstek J (2002) Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr 34:105–113

    PubMed  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229

    PubMed  CAS  Google Scholar 

  • Edmonson DE, Binda C, Mattevi A (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys 464:269–276

    Google Scholar 

  • El-Sohemy A (2007) Nutrigenetics. Forum Nutr 60:25–30

    PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    PubMed  Google Scholar 

  • Esposito LA, Kokoszka JE, Waymire KG, Cottrell B, MacGregor GR, Wallace DC (2000) Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene. Free Radic Biol Med 28:754–766

    PubMed  CAS  Google Scholar 

  • Esterházy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964–3971

    PubMed  Google Scholar 

  • Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279:33035–33038

    PubMed  CAS  Google Scholar 

  • Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G (2008) Generation of reactive oxygen species by mitochondrial Complex I: implications in neurodegeneration. Neurochem Res 33:2487–2501

    PubMed  CAS  Google Scholar 

  • Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of Complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1767:384–392

    Google Scholar 

  • Finkel T (2006) Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal 8:1857–1863

    PubMed  CAS  Google Scholar 

  • Forkink M, Smeitink JA, Brock R, Willems PH, Koopman WJ (2010) Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta 1797(6–7):1034–1044, Epub 25 Jan 2010

    PubMed  CAS  Google Scholar 

  • Forman HJ, Kennedy J (1975) Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J Biol Chem 250:4322–4326

    PubMed  CAS  Google Scholar 

  • Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S (2008) The chemistry of cell signalling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477:183–195

    PubMed  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  • Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase by 4-hydroxy-2- nonenal cross-linked protein. FEBS Lett 405:21–25

    PubMed  CAS  Google Scholar 

  • Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    PubMed  CAS  Google Scholar 

  • Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135

    PubMed  CAS  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti CG, Lenaz G (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505:364–368

    PubMed  CAS  Google Scholar 

  • Genova ML, Abd-Elsalam NM, Mahdy ES, Bernacchia A, Lucarini M, Peduli GF, Lenaz G (2006) Redox cycling of adrenaline and adrenochrome catalysed by mitochondrisal Complex I. Arch Biochem Biophys 447:167–173

    PubMed  CAS  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777:740–746

    PubMed  CAS  Google Scholar 

  • Gertz M, Fischer F, Leipelt M, Wolters D, Steegborn C (2009) Identification of Peroxiredoxin 1 as a novel interaction partner for the lifespan regulator protein p66Shc. Aging (Albany NY) 1:254–265

    CAS  Google Scholar 

  • Ghafourifar P, Sen CK (2007) Mitochondrial nitric oxide synthase. Front Biosci 12:1072–1078

    PubMed  CAS  Google Scholar 

  • Ghazi A, Henis-Korenblit S, Kenyon C (2007) Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci USA 104:5947–5952

    PubMed  CAS  Google Scholar 

  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minacci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    PubMed  CAS  Google Scholar 

  • Girotti AW (2008) Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med 44:956–968

    PubMed  CAS  Google Scholar 

  • Goetz ME, Luch A (2008) Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett 266:73–83

    PubMed  CAS  Google Scholar 

  • Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35

    PubMed  Google Scholar 

  • Gong Y, Agani FH (2005) Oligomycin inhibits HIF-1α expression in hypoxic tumor cells. Am J Physiol Cell Physiol 288:C1023–C1029

    PubMed  CAS  Google Scholar 

  • Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304

    PubMed  CAS  Google Scholar 

  • Grivennikova VG, Kareyeva AV, Vinogradov AD (2010) What are the sources of hydrogen peroxide production by heart mitochondria? Biochim Biophys Acta 1797:939–944

    PubMed  CAS  Google Scholar 

  • Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing–where do we stand? Front Biosci 13:6554–6579

    PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJA (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    PubMed  CAS  Google Scholar 

  • Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105:1849–1860

    PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at Complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    PubMed  CAS  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hamelin M, Mary J, Vostry M, Friguet B, Bakala H (2007) Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging. FEBS J 274:5949–5961

    PubMed  CAS  Google Scholar 

  • Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416

    PubMed  CAS  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    PubMed  CAS  Google Scholar 

  • Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, Blamire AM, Manners D, Styles P, Schapira AH, Cooper JM (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62:621–626

    PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962a) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669

    PubMed  CAS  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962b) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-Coenzyme Q reductase. J Biol Chem 237:1676–1680

    PubMed  CAS  Google Scholar 

  • Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T (1996) Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226:369–377

    PubMed  CAS  Google Scholar 

  • Hayflick L (2003) Living forever and dying in the attempt. Exp Gerontol 38:1231–1241

    PubMed  Google Scholar 

  • Haynes V, Elfering SL, Squires RJ, Traaseth N, Solien J, Ettl A, Giulivi C (2003) Mitochondrial nitric-oxide synthase: role in pathophysiology. IUBMB Life 55:599–603

    PubMed  CAS  Google Scholar 

  • Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair 6:470–480

    PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (2000) Localization of the site of oxygen radical generation inside the Complex I of heart and nonsynaptic brain mammalian mitochondria. J Bioenerg Biomembr 32:609–616

    PubMed  CAS  Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309:71–74

    Google Scholar 

  • Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980

    PubMed  CAS  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park A-M, Kira Y, Imada I, Utsumi K (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505

    PubMed  CAS  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    PubMed  CAS  Google Scholar 

  • Jezek P, Hlavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    PubMed  CAS  Google Scholar 

  • Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271

    PubMed  CAS  Google Scholar 

  • Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J (2001) Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 98:14126–14131

    PubMed  CAS  Google Scholar 

  • Kareyeva AV, Grivennikova VG, Cecchini G, Vinogradov AD (2011) Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett 585:385–389

    PubMed  CAS  Google Scholar 

  • Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16:474–486

    PubMed  CAS  Google Scholar 

  • Klingenberg M (1970) Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem 13:247–252

    PubMed  CAS  Google Scholar 

  • Koene S, Smeitink J (2009) Mitochondrial medicine: entering the era of treatment. J Intern Med 265:193–209

    PubMed  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    PubMed  CAS  Google Scholar 

  • Kovacic P, Cooksy AL (2005) Unifying mechanism for the toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 64:357–366

    PubMed  CAS  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2004) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem 279:26453–26461

    PubMed  CAS  Google Scholar 

  • Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD (2006) OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina. Ann N Y Acad Sci 1067:106–115

    PubMed  CAS  Google Scholar 

  • Krungkrai J (1991) Malarial dihydroorotate dehydrogenase mediates superoxide radical production. Biochem Int 24:833–839

    PubMed  CAS  Google Scholar 

  • Kukat A, Trifunovic A (2009) Somatic mtDNA mutations and aging–facts and fancies. Exp Gerontol 44:101–105

    PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)  +  oxidation-reduction state. Biochem J 368:545–553

    PubMed  CAS  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    PubMed  CAS  Google Scholar 

  • Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    PubMed  CAS  Google Scholar 

  • Lacza Z, Pankotai E, Busija DW (2009) Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci 14:4436–4443

    PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    PubMed  CAS  Google Scholar 

  • Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347

    PubMed  CAS  Google Scholar 

  • Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379

    PubMed  CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    PubMed  CAS  Google Scholar 

  • Lee HC, Wei YH (1997) Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. J Formos Med Assoc 96:770–778

    PubMed  CAS  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and aging. Biochim Biophys Acta 1366:53–67

    PubMed  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2009a) Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787:563–573

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2009b) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41:1750–1772

    PubMed  CAS  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12(8):961–1008, Epub 15 Feb 2010

    PubMed  CAS  Google Scholar 

  • Lenaz G, Strocchi P (2009) Reactive oxygen species in the induction of toxicity. In: Ballantyne B, Marrs T, Syversen T (eds) General and applied toxicology, vol 1. Wiley, Chichester, chapter 15

    Google Scholar 

  • Lenaz G, Bovina C, Formiggini G, Parenti Castelli G (1999) Mitochondria, oxidative stress, and antioxidant defences. Acta Biochim Pol 46:1–21

    PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Fato R, Genova ML, Solaini G (2006a) New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 8:417–437

    PubMed  CAS  Google Scholar 

  • Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006b) Mitochondrial Complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420

    PubMed  CAS  Google Scholar 

  • Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7:S8–S33

    PubMed  CAS  Google Scholar 

  • Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M, Faccioli M, Falasca A, Fato R, Genova ML, Sgarbi G, Solaini G (2010) Mitochondrial respiratory chain super-complex I-III in physiology and pathology. Biochim Biophys Acta 1797(6–7):633–640, Epub 30 Jan 2010

    PubMed  CAS  Google Scholar 

  • Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93:15036–15040

    PubMed  CAS  Google Scholar 

  • Lin SJ, Ford E, Hagis M, Liszt G, Guarente L (2004) Calorie restriction extends life span by lowering the level of NADH. Genes Dev 18:12–16

    PubMed  CAS  Google Scholar 

  • Linnane AW, Eastwood H (2006) Cellular redox regulation and prooxidant signalling systems: a new perspective on the free radical theory of aging. Ann NY Acad Sci 1067:47–55

    PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645

    PubMed  CAS  Google Scholar 

  • Linnane AW, Degli Esposti M, Generowicz M, Luff AR, Nagley P (1995) The universality of bioenergetic disease and amelioration with redox therapy. Biochim Biophys Acta 1271:191–194

    PubMed  Google Scholar 

  • Liu B, Chen Y, St. Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44:1529–1535

    PubMed  CAS  Google Scholar 

  • Luch A (2005) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London

    Google Scholar 

  • Maj MC, Raha S, Myint T, Robinson BH (2004) Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity? Protein J 23:25–32

    PubMed  CAS  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    PubMed  Google Scholar 

  • Marnett LJ (1999) Lipid peroxidation – DNA damage by malondialdehyde. Mutat Res 424:83–95

    PubMed  CAS  Google Scholar 

  • Mates JM, Perez-Gomez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    PubMed  CAS  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10; administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 95:8892–8897

    PubMed  CAS  Google Scholar 

  • Maurel A, Hernandez C, Kunduzova O, Bompart G, Cambon C, Parini A, Frances B (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 284:H1460–H1467

    PubMed  CAS  Google Scholar 

  • McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease–its impact, etiology, and pathology. Curr Top Dev Biol 77:113–155

    PubMed  CAS  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361:462–469

    PubMed  CAS  Google Scholar 

  • McLennan H, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes in the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    PubMed  CAS  Google Scholar 

  • Meissner C (2007) Mutations of mitochondrial DNA: cause or consequence of the ageing process? Z Gerontol Geriatrie 40:325–333

    CAS  Google Scholar 

  • Melov S, Coskun P, Patel M, Tuinstra M, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851

    PubMed  CAS  Google Scholar 

  • Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, Giorgio M, Migliaccio E, Pelicci PG, Iacobini C, Pugliese G (2006) Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 55:1642–1650

    PubMed  CAS  Google Scholar 

  • Messner KR, Imlay JA (2002) Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277:42563–42571

    PubMed  CAS  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolci PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Pelicci PG (2006) Apoptosis and aging: role of p66Shc protein. Antioxid Redox Signal 8:600–608

    PubMed  CAS  Google Scholar 

  • Miwa S, St-Pierre J, Partridge L, Brand MD (2003) Superoxide and hydrogen peroxide production in Drosophila mitochondria. Free Radic Biol Med 35:938–948

    PubMed  CAS  Google Scholar 

  • Morrow JD (2005) Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 25:279–286

    PubMed  CAS  Google Scholar 

  • Muller FL, Roberts AG, Bowman NK, Kramer DM (2003) Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 42:6493–6499

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Murray J, Oquendo CE, Willis JH, Marusich MF, Capaldi RA (2008) Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress. Adv Drug Deliv Rev 60:1497–1503

    PubMed  CAS  Google Scholar 

  • Nakano H, Nakajima A, Sakon-Komazawa S, Piao J-H, Xue X, Okumura K (2006) Reactive oxygen species mediate cross-talk between nFκB and JNK. Cell Death Differ 13:730–737

    PubMed  CAS  Google Scholar 

  • Napoli C, Martin-Padura I, De Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci PG (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 18:2112–2116

    Google Scholar 

  • Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 60:1534–1544

    PubMed  CAS  Google Scholar 

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic, London

    Google Scholar 

  • Nohl H, Gille L, Kozlov AV (1998) Antioxidant-derived prooxidant formation from ubiquinol. Free Radic Biol Med 25:666–675

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555–4561

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD (1998) Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. Biochim Biophys Acta 1365:301–308

    PubMed  CAS  Google Scholar 

  • Ohnishi ST, Ohnishi T, Muranaka S, Fujita H, Kimura H, Uemura K, Yoshida K, Utsumi K (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37:1–15

    PubMed  CAS  Google Scholar 

  • Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S, Ohnishi T (2010) New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Biochim Biophys Acta 1797:1901–1909

    PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    PubMed  CAS  Google Scholar 

  • Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425–464

    PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2007) Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 6:189–210

    PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci 959:475–490

    PubMed  CAS  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    PubMed  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59

    PubMed  CAS  Google Scholar 

  • Peppa M, Uribarri J, Vlassara H (2008) Aging and glycoxidant stress. Hormones (Athens) 7:123–132

    Google Scholar 

  • Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M (2005) Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384:254–259

    PubMed  CAS  Google Scholar 

  • Peters K, Dudkina NV, Jänsch L, Braun HP, Boekema EJ (2008) A structural investigation of complex I and I  +  III2 supercomplex from Zea mays at 11-13 A resolution: assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I. Biochim Biophys Acta 1777:84–93

    PubMed  CAS  Google Scholar 

  • Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D, Paradies G (2007) Mitochondrial dysfunction in rat with nonalcoholic fatty liver Involvement of complex I, reactive oxygen species and cardiolipin. Biochim Biophys Acta 1767:1260–1267

    PubMed  CAS  Google Scholar 

  • Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G (2009) Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin, Free Radic. Biol Med 46:88–94

    CAS  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880

    PubMed  CAS  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    PubMed  CAS  Google Scholar 

  • Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzato R (2007) Protein kinase Cβ and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663

    PubMed  CAS  Google Scholar 

  • Pou S, Keaton L, Surichamorn W, Rosen GM (1999) Mechanism of superoxide generation by neuronal nitric oxide synthase. J Biol Chem 274:9573–9580

    PubMed  CAS  Google Scholar 

  • Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 154:269–279

    PubMed  CAS  Google Scholar 

  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    PubMed  CAS  Google Scholar 

  • Raha S, Myint AT, Johnstone L, Robinson BH (2002) Control of oxygen free radical formation from mitochondrial complex I: roles for protein kinase A and pyruvate dehydrogenase kinase. Free Radic Biol Med 32:421–430

    PubMed  CAS  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    PubMed  CAS  Google Scholar 

  • Rauchová H, Vrbacký M, Bergamini C, Fato R, Lenaz G, Houstek J, Drahota Z (2006) Inhibition of glycerophosphate-dependent H2O2 generation in brown fat mitochondria by idebenone. Biochem Biophys Res Commun 339:362–366

    PubMed  Google Scholar 

  • Reeve AK, Krishnan KJ, Turnbull DM (2008) Age related mitochondrial degenerative disorders in humans. Biotechnol J 3:750–756

    PubMed  CAS  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med 38:1543–1552

    PubMed  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, Azuma K, Wood RJ, Toledo FG, Goodpaster BH, Ruderman NB, Kelley DE (2009) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298(1):E49–E58, Epub 3 Nov 2009

    PubMed  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    PubMed  CAS  Google Scholar 

  • Rosenfeldt F, Marasco S, Lyon W, Wowk M, Sheeran F, Bailey M, Esmore D, Davis B, Pick A, Rabinov M, Smith J, Nagley P, Pepe S (2005) Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J Thorac Cardiovasc Surg 129:25–32

    PubMed  CAS  Google Scholar 

  • Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T (2003) Mitochondrial threshold effects. Biochem J 370:751–762

    PubMed  CAS  Google Scholar 

  • Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Luscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66Shc gene. Circ Res 99:42–52

    PubMed  CAS  Google Scholar 

  • Rötig A, Appelkvist EL, Geromel V, Chretien D, Khadom N, Edery P, Lebideau M, Dallner G, Munnich A, Ernster L, Rustin P (2000) Quinone-responsive multiple respiratory chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395

    PubMed  Google Scholar 

  • Rubio AR, Morales-Segura MA (2004) Nitric oxide, an iceberg in cardiovascular physiology: far beyond vessel tone control. Arch Med Res 35:1–11

    PubMed  CAS  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    PubMed  CAS  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    PubMed  CAS  Google Scholar 

  • Saito Y, Fukuhara A, Nishio K, Hayakawa M, Ogawa Y, Sakamoto H, Fujii K, Yoshida Y, Niki E (2009) Characterization of cellular uptake and distribution of coenzyme Q10 and vitamin E in PC12 cells. J Nutr Biochem 20:350–357

    PubMed  CAS  Google Scholar 

  • Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore AM, Mariggiò MA, Mordente A, Gianni L, Minotti G (2006) Detective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281:10990–11001

    PubMed  CAS  Google Scholar 

  • Salvi M, Battaglia V, Brunati AM, La Rocca N, Tibaldi E, Pietrangeli P, Marcocci L, Mondovì B, Rossi CA, Toninello A (2007) Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem 282:24407–24415

    PubMed  CAS  Google Scholar 

  • Sarti P, Giuffré A, Forte E, Mastronicola D, Barone MC, Brunori M (2000) Nitric oxide and cytochrome oxidase: mechanisms of inhibition and NO degradation. Biochem Biophys Res Commun 274:183–187

    PubMed  CAS  Google Scholar 

  • Scacco S, Petruzzella V, Bestini E, Luso A, Papa F, Bellomo F, Signorile A, Torraco A, Papa S (2006) Mutations in structural genes of complex I associated with neurological diseases. Ital J Biochem 55:254–262

    PubMed  CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    PubMed  CAS  Google Scholar 

  • Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 46:12579–12585

    PubMed  Google Scholar 

  • Schägger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    PubMed  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  Google Scholar 

  • Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279:36349–36353

    PubMed  Google Scholar 

  • Schlossmann JU, Hofmann F (2005) cGMP-dependent protein kinases in drug discovery. Drug Discov Today 10:627–634

    PubMed  CAS  Google Scholar 

  • Schoneich C (1999) Reactive oxygen species and biological aging: a mechanistic approach. Exp Gerontol 34:19–34

    PubMed  CAS  Google Scholar 

  • Seifert EL, Estey C, Xuan JY, Harper ME (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758

    PubMed  CAS  Google Scholar 

  • Sekhar BS, Kurup CK, Ramasarma T (1987) Generation of hydrogen peroxide by brown adipose tissue mitochondria. J Bioenerg Biomembr 19:397–407

    PubMed  CAS  Google Scholar 

  • Shen Y, Shen HM, Shi CY, Ong CN (1996) Benzene metabolites enhance reactive oxygen species generation in HL60 human leukaemia cells. Hum Exp Toxicol 15:422–427

    PubMed  CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M, Parkinson Study Group (2002) Effects of Coenzyme Q10 in early Parkinson’s disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    PubMed  Google Scholar 

  • Sies H, Stahl W, Sevanian A (2005) Nutritional, dietary and post-prandial oxidative stress. J Nutr 135:969–972

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    PubMed  CAS  Google Scholar 

  • Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485

    PubMed  CAS  Google Scholar 

  • Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13

    PubMed  CAS  Google Scholar 

  • Sohal RS, Sohal BH, Orr WC (1995) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med 19:499–504

    PubMed  CAS  Google Scholar 

  • Soory M (2009) Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: potential for therapeutic targeting. Infect Disord Drug Targets 9:400–414

    PubMed  CAS  Google Scholar 

  • Soskic V, Groebe K, Schrattenholz A (2008) Nonenzymatic posttranslational protein modifications in ageing. Exp Gerontol 43:247–257

    PubMed  CAS  Google Scholar 

  • Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J (2001) Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 276:21995–21998

    PubMed  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    PubMed  CAS  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    PubMed  CAS  Google Scholar 

  • Staniek K, Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460:268–275

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2001) Myxothiazol induces H2O2 production from mitochondrial respiratory chain. Biochem Biophys Res Commun 281:645–650

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transfer chain. J Biol Chem 277:44784–44790

    PubMed  CAS  Google Scholar 

  • Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160

    PubMed  CAS  Google Scholar 

  • Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schägger H (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279:5000–5007

    PubMed  CAS  Google Scholar 

  • Strolin Benedetti M, Whomsley R, Baltes E (2006) Involvement of enzymes other than cytochrome P450 in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2:895–921

    CAS  Google Scholar 

  • Strolin Benedetti M, Tipton KF, Whomsley R (2007) Amine oxidases and monooxygenases in the in vivo metabolism of xenobiotic amines in humans: has the involvement of amine oxidases been neglected? Fundam Clin Pharmacol 21:467–479

    PubMed  Google Scholar 

  • Sultana R, Butterfield DA (2009) Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J Bioenerg Biomembr 41:441–446

    PubMed  CAS  Google Scholar 

  • Sun X, Zhou Z, Kang YI (2001) Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res 61:3382–3387

    PubMed  CAS  Google Scholar 

  • Tahara EB, Barros MH, Oliveira GA, Netto LES, Kowaltowski AJ (2007) Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging. FASEB J 21:274–283

    PubMed  CAS  Google Scholar 

  • Takahashi T, Yamaguchi T, Shitashige M, Okamoto T, Kishi T (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation. Biochem J 309:883–890

    PubMed  CAS  Google Scholar 

  • Takeshige K, Minakami S (1979) NADH and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J 180:129–135

    PubMed  CAS  Google Scholar 

  • Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K (1998) Mitochondrial genotype associated with longevity. Lancet 351:185–186

    PubMed  CAS  Google Scholar 

  • Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26

    PubMed  CAS  Google Scholar 

  • Tomilov AA, Bicocca V, Schoenfeld RA, Giorgio M, Migliaccio E, Ramsey JJ, Hagopian K, Pelicci PG, Cortopassi GA (2010) Decreased superoxide production in macrophages of long-lived p66Shc knock-out mice. J Biol Chem 285:1153–1165

    PubMed  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778

    PubMed  CAS  Google Scholar 

  • Trifunovic A (2006) Mitochondrial DNA and ageing. Biochim Biophys Acta 1757:611–617

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    PubMed  CAS  Google Scholar 

  • Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878

    PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199

    PubMed  CAS  Google Scholar 

  • Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13(4):539–549, Epub 3 Dec 2009

    Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  • Van Raam BJ, Sluiter W, de Wit E, Roos D, Verhoeven AJ, Kuijpers TW (2008) Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3:e2013

    PubMed  Google Scholar 

  • Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 198:296–302

    Google Scholar 

  • Venkatakrishnan P, Nakayasu ES, Almeida IC, Miller RT (2009) Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria. J Biol Chem 284:19843–19855

    PubMed  CAS  Google Scholar 

  • Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G (2002) Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta 1553:249–260

    PubMed  CAS  Google Scholar 

  • Verkaart S, Koopman WJH, van Ernst-de Vries SE, Nijtmans LGJ, van den Heuvel LWPJ, Smeitink JAM, Willems PHGM (2007) Superoxide production is inversely related to Complex I activity in inherited Complex I deficiency. Biochim Biophys Acta 1772:373–381

    PubMed  CAS  Google Scholar 

  • Vila A, Korytowsky W, Girotti AW (2000) Dissemination of peroxidative stress via intermembrane transfer of lipid peroxides: model studies with cholesterol hydroperoxides. Arch Biochem Biophys 380:208–218

    PubMed  CAS  Google Scholar 

  • Vinogradov AD, Grivennikova VG (2005) Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Moscow) 70:120–127

    CAS  Google Scholar 

  • Vlassara H (2005) Advances glycation in health and disease: role of the modern environment. Ann NY Accad. Sci. 1043: 452–460

    Google Scholar 

  • Vlassara H, Striker G (2007) Glycotoxins in the diet promote diabetes and diabetic complications. Curr Diab Rep 7:235–241

    PubMed  CAS  Google Scholar 

  • Vonck J, Schäfer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793:117–124

    PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G (2001) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA 98:4022–4027

    PubMed  CAS  Google Scholar 

  • Wei Y-H, Lee H-C (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    CAS  Google Scholar 

  • Wells WW, Xu DP, Washburn MP, Cirrito HK, Olson LK (2001) Polyhydroxybenzoates inhibit ascorbic acid activation of mitochondrial glycerol-3-phosphate dehydrogenase: implications for glucose metabolism and insulin secretion. J Biol Chem 276:2404–2410

    PubMed  CAS  Google Scholar 

  • Wendt T, Tanji N, Guo J, Hudson BI, Bierhaus A, Ramasamy R, Arnold B, Nawroth PP, Yan SF, d’Agati V, Schmidt AM (2003) Glucose, glycation and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 14:1383–1395

    PubMed  CAS  Google Scholar 

  • Wenz T, Hielscher R, Hellwig P, Schägger H, Richers S, Hunte C (2009) Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation. Biochim Biophys Acta 1787:609–616

    PubMed  CAS  Google Scholar 

  • Williams SD, Gottlieb RA (2002) Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and is cardioprotective. Biochem J 362:23–32

    PubMed  CAS  Google Scholar 

  • Wiswedel I, Gardemann A, Storch A, Peter D, Schild L (2010) Degradation of phospholipids by oxidative stress–exceptional significance of cardiolipin. Free Radic Res 44:135–145

    PubMed  CAS  Google Scholar 

  • Yan LJ, Sohal RS (2000) Prevention of flight activity prolongs the life span of the housefly, Musca domestica, and attenuates the age-associated oxidative damamge to specific mitochondrial proteins. Free Radic Biol Med 29:1143–1150

    PubMed  CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    PubMed  CAS  Google Scholar 

  • Yu A, Yu L, King TE (1974) Soluble cytochrome b-c1 complex and the reconstitution of succinate-cytochrome c reductase. J Biol Chem 249:4905–4910

    PubMed  CAS  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    PubMed  CAS  Google Scholar 

  • Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20:564–571

    PubMed  CAS  Google Scholar 

  • Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273:33972–33976

    PubMed  CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    PubMed  CAS  Google Scholar 

  • Zhang J, Frerman FE, Kim JJ (2006) Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci USA 103:16212–16217

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Hastings TG, Perez RG (2002) Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat Disord 8:389–393

    PubMed  Google Scholar 

  • Zimniak P (2008) Detoxification reactions: relevance to aging. Aging Res Rev 7:281–300

    CAS  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Exp Med 192:1001–1014

    CAS  Google Scholar 

  • Zorov DB, Bannikova SY, Belousov VV, Vyssokikh MY, Zorova LD, Isaev NK, Krasnikov BF, Plotnikov EY (2005) Reactive oxygen and nitrogen species: friends or foes? Biochemistry (Moscow) 70:215–221

    CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Lenaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lenaz, G. (2012). Mitochondria and Reactive Oxygen Species. Which Role in Physiology and Pathology?. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_5

Download citation

Publish with us

Policies and ethics