Skip to main content

What Is a Seizure Network? Long-Range Network Consequences of Focal Seizures

  • Chapter
  • First Online:
Book cover Issues in Clinical Epileptology: A View from the Bench

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 813))

Abstract

What defines the spatial and temporal boundaries of seizure activity in brain networks? To fully answer this question a precise and quantitative definition of seizures is needed, which unfortunately remains elusive. Nevertheless, it is possible to ask under conditions where clearly divergent patterns of activity occur in large-scale brain networks whether certain activity patterns are part of the seizure while others are not. Here we examine brain network activity during focal limbic seizures, including diverse regions such as the hippocampus, subcortical arousal systems and fronto-parietal association cortex. Based on work from patients and from animal models we describe a characteristic pattern of intense increases in neuronal firing, cerebral blood flow, cerebral blood volume, blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) signals and cerebral metabolic rate of oxygen consumption in the hippocampus during focal limbic seizures. Similar increases are seen in certain closely linked subcortical structures such as the lateral septal nuclei and anterior hypothalamus, which contain inhibitory neurons. In marked contrast, decreases in all of these parameters are seen in the subcortical arousal systems of the upper brainstem and intralaminar thalamus, as well as in the fronto-parietal association cortex. We propose that the seizure proper can be defined as regions showing intense increases, while those areas showing opposite changes are inhibited by the seizure network and constitute long-range network consequences beyond the seizure itself. Importantly, the fronto-parietal cortex shows sleep-like slow wave activity and depressed metabolism under these conditions, associated with impaired consciousness. Understanding which brain networks are directly involved in seizures versus which sustain secondary consequences can provide new insights into the mechanisms of brain dysfunction in epilepsy, hopefully leading to innovative treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieb JP, Dasheiff RB, Engel J Jr (1991) Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia 32(6):822–837

    Article  CAS  PubMed  Google Scholar 

  2. Blumenfeld H, Rivera M, McNally KA, Davis K, Spencer DD, Spencer SS (2004) Ictal neocortical slowing in temporal lobe epilepsy. Neurology 63:1015–1021

    Article  CAS  PubMed  Google Scholar 

  3. Englot DJ, Yang L, Hamid H, Danielson N, Bai X, Marfeo A et al (2010) Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain 133(Pt 12):3764–3777

    Article  PubMed Central  PubMed  Google Scholar 

  4. Schevon CA, Weiss SA, McKhann G Jr, Goodman RR, Yuste R, Emerson RG et al (2012) Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun 3:1060

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ebersole JS, Pedley TA (2003) Current practice of clinical electroencephalography, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  6. Steriade M, Contreras D, Curro Dossi R, Nunez A (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13(8):3284–3299

    CAS  PubMed  Google Scholar 

  7. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26(17):4535–4545

    Article  CAS  PubMed  Google Scholar 

  8. Laureys S, Schiff ND (2009) Disorders of consciousness, Annals of the New York academy of sciences. Wiley-Blackwell, New York

    Google Scholar 

  9. Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067

    Article  CAS  PubMed  Google Scholar 

  10. Prince DA, Wilder BJ (1967) Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch Neurol 16(2):194–202

    Article  CAS  PubMed  Google Scholar 

  11. Chassagnon S, Namer IJ, Armspach JP, Nehlig A, Kahane P, Kehrli P et al (2009) SPM analysis of ictal-interictal SPECT in mesial temporal lobe epilepsy: relationships between ictal semiology and perfusion changes. Epilepsy Res 85(2–3):252–260

    Article  CAS  PubMed  Google Scholar 

  12. Van Paesschen W, Dupont P, Van Driel G, Van Billoen H, Maes A (2003) SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126(5):1103–1111

    Article  PubMed  Google Scholar 

  13. Blumenfeld H, McNally KA, Vanderhill SD, Paige AL, Chung R, Davis K et al (2004) Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 14(8):892–902

    Article  PubMed  Google Scholar 

  14. Lee KH, Meador KJ, Park YD, King DW, Murro AM, Pillai JJ et al (2002) Pathophysiology of altered consciousness during seizures: subtraction SPECT study [comment]. Neurology 59(6):841–846

    Article  CAS  PubMed  Google Scholar 

  15. Hogan RE, Kaiboriboon K, Bertrand ME, Rao V, Acharya J (2006) Composite SISCOM perfusion patterns in right and left temporal seizures. Arch Neurol 63(10):1419–1426

    Article  PubMed  Google Scholar 

  16. Tae WS, Joo EY, Kim JH, Han SJ, Suh Y-L, Kim BT, Hong SC, Hong SB (2005) Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT. Neuroimage 24:101–110

    Article  PubMed  Google Scholar 

  17. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L et al (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132(Pt 8):2091–2101

    Article  PubMed  Google Scholar 

  18. Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P et al (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928

    Article  PubMed  Google Scholar 

  19. Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3(3):219–231

    Article  PubMed  Google Scholar 

  20. Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet Neurol 11:814–826

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yang L, Shklyar I, Lee HW, Ezeani CC, Anaya J, Balakirsky S et al (2012) Impaired consciousness in epilepsy investigated by a prospective responsiveness in epilepsy scale (RES). Epilepsia 53(3):437–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bauerschmidt A, Koshkelashvili N, Ezeani CC, Yoo J, Zhang Y, Manganas LN et al (2012) Prospective evaluation of ictal behavior using the revised Responsiveness in Epilepsy Scale (RES II). Soc Neurosci Abstr, Online at http://websfnorg/

    Google Scholar 

  23. Cunningham C, Chen WC, Shorten A, McClurkin M, Choezom T, Schmidt CC et al (2014) Impaired consciousness in partial seizures is bimodally distributed. Neurology 82:1736–1744

    Google Scholar 

  24. Blumenfeld H, Jackson GD (2013) Should consciousness be considered in the classification of focal (partial) seizures? Epilepsia 54(6):1125–1130

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sloviter RS (2008) Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: the importance of the “latent period” and other concepts. Epilepsia 49(Suppl 9):85–92

    Article  PubMed  Google Scholar 

  26. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Method 172(2):143–157

    Article  CAS  Google Scholar 

  27. McIntyre DC, Gilby KL (2008) Mapping seizure pathways in the temporal lobe. Epilepsia 49(Suppl 3):23–30

    Article  PubMed  Google Scholar 

  28. Coulter DA, McIntyre DC, Loscher W (2002) Animal models of limbic epilepsies: what can they tell us? Brain Pathol 12(2):240–256

    Article  PubMed Central  PubMed  Google Scholar 

  29. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7(4):348–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Englot DJ, Mishra AM, Mansuripur PK, Herman P, Hyder F, Blumenfeld H (2008) Remote effects of focal hippocampal seizures on the rat neocortex. J Neurosci 28(36):9066–9081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Englot DJ, Modi B, Mishra AM, DeSalvo M, Hyder F, Blumenfeld H (2009) Cortical deactivation induced by subcortical network dysfunction in limbic seizures. J Neurosci 29(41):13006–13018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Motelow JE, Gummadavelli A, Zayyad Z, Mishra AM, Sachdev RNS, Sanganahalli BG et al (2012) Brainstem cholinergic and thalamic dysfunction during limbic seizures: possible mechanism for cortical slow oscillations and impaired consciousness. Soc Neurosci Abstr, Online at http://am2012.sfn.org/am2012/

  33. Schiff ND (2012) Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci 1265:56–68

    Article  PubMed  Google Scholar 

  34. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury [see comment][erratum appears in Nature. 2008; 452(7183):120 Note: Biondi, T [added]]. Nature 448(7153):600–603

    Google Scholar 

  35. Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67(4):554–566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to especially thank Phil Schwartzkroin for his many leadership roles in the field of epilepsy including original scientific research, organizational leadership, publishing and education. He serves as an exemplary role model for colleagues in the field.

Other Acknowledgements

This work was supported by NIH R01NS055829, R01NS066974, R01MH67528, P30NS052519, U01NS045911, and the Betsy and Jonathan Blattmachr Family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Blumenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blumenfeld, H. (2014). What Is a Seizure Network? Long-Range Network Consequences of Focal Seizures. In: Scharfman, H., Buckmaster, P. (eds) Issues in Clinical Epileptology: A View from the Bench. Advances in Experimental Medicine and Biology, vol 813. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8914-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8914-1_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8913-4

  • Online ISBN: 978-94-017-8914-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics