Skip to main content
Log in

Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The accuracy of toad snapping towards moving worm dummies under various levels of dim illumination (from absolute threshold to “moonlight”) was videorecorded and related to spike responses of retinal ganglion cells exposed to equivalent stimuli. Some toads (at ca. 16 °C) successfully snapped at dummies that produced only one photoisomerization per 50 rods per second in the retina, in good agreement with thresholds of sensitive retinal ganglion cells. One factor underlying such high sensitivity is extensive temporal summation by the ganglion cells. This, however, is inevitably accompanied by very long response latencies (around 3 s near threshold), whereby the information reaching the brain shows the dummy in a position where it was several seconds earlier. Indeed, as the light was dimmed, snaps were displaced successively further to the rear of the dummy, finally missing it. The results in weak but clearly supra-threshold illumination indicate that snaps were aimed at the advancing head as seen by the brain, but landed further backwards in proportion to the retinal latency. Near absolute threshold, however, accuracy was “too good”, suggesting that the animal had recourse to a neural representation of the regularly moving dummies to correct for the slowness of vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho A-C, Donner K, Hydén C, Reuter T, Orlov O Y (1987) Retinal noise, the performance of retinal ganglion cells, and visual sensitivity in the dark-adapted frog. J Opt Soc Am A 4:2321–2329

    Google Scholar 

  • Aho A-C, Donner K, Hydén C, Larsen LO, Reuter T (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature (Lond) 334:348–350

    Google Scholar 

  • Aho A-C, Donner K, Reuter T (1993) Retinal origins of the temperature effect on absolute visual sensitivity in frogs. J Physiol (Lond) 463:501–521

    Google Scholar 

  • Bäckström A-C, Hemilä S, Reuter T (1978) Directional selectivity and colour coding in the frog retina. Med Biol 56:76–83

    Google Scholar 

  • Baylor DA, Hodgkin AL, Lamb TD (1974) The electrical response of turtle cones to flashes and steps of light. J Physiol (Lond) 242:685–727

    Google Scholar 

  • Baylor DA, Lamb TD, Yau K-W (1979) Rod responses to single photons. J Physiol (Lond) 288:613–634

    Google Scholar 

  • Baylor DA, Matthews G, Yau K-W (1980) Two components of electrical dark noise in toad retinal rod outer segments. J Physiol (Lond) 309:591–621

    Google Scholar 

  • Copenhagen DR, Donner K, Reuter T (1987) Ganglion cell performance at absolute threshold in toad retina: effects of dark events in rods. J Physiol (Lond) 393:667–680

    Google Scholar 

  • Donner K (1981) Receptive fields of frog retinal ganglion cells: response formation and light-dark-adaptation. J Physiol (Lond) 319:131–142

    Google Scholar 

  • Donner K (1987) Adaptation-related changes in the spatial and temporal summation of frog retinal ganglion cells. Acta Physiol Scand 131:479–487

    Google Scholar 

  • Donner K (1989a) Visual latency and brightness: an interpretation based on the responses of rods and ganglion cells in the frog retina. Visual Neurosci 3:39–51

    Google Scholar 

  • Donner K (1989b) The absolute sensitivity of vision: can a frog become a perfect detector of light-induced and dark rod events? Physica Scripta 39:133–140

    Google Scholar 

  • Donner KO, Reuter T (1962) The spectral sensitivity and photopigment of the green rods in the frog's retina. Vision Res 2:357–372

    Google Scholar 

  • Donner K, Copenhagen DR, Reuter T (1990) Weber and noise adaptation in the retina of the toad Bufo marinus. J Gen Physiol 95:733–753

    Google Scholar 

  • du Pont JS, de Groot PJ (1974) A schematic dioptric apparatus for the frog's eye (Rana esculenta). Vision Res 16:803–810

    Google Scholar 

  • Eikmanns K-H von (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Z Tierpsychol 12:229–253

    Google Scholar 

  • Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z Vergl Physiol 57:263–298

    Google Scholar 

  • Ewert J-P, Hock F (1972) Movement-sensitive neurones in the toad's retina. Exp Brain Res 16:41–59

    Google Scholar 

  • Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey capture detectors in the toad's Bufo bufo (L.) visual system: A correlation analysis. J Comp Physiol 126:43–47

    Google Scholar 

  • Govardovskii VI, Zueva LV (1974) Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Res 14:1317–1321

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59:1–24

    Google Scholar 

  • Hemilä S, Reuter T (1981) Longitudinal spread of adaptation in the rods of the frog's retina. J Physiol (Lond) 310:501–528

    Google Scholar 

  • Himstedt W (1982) Prey selection in salamanders. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) The analysis of visual behaviour. The MIT Press, Cambridge, Mass, pp 47–66

    Google Scholar 

  • Jagger WS (1988) Optical quality of the eye of the cane toad Bufo marinus. Vision Res 28:105–114

    Google Scholar 

  • Lamb TD (1984) Effects of temperature changes on toad rod photocurrents. J Physiol (Lond) 346:557–578

    Google Scholar 

  • Lamb TD, Pugh EN Jr (1992) G-protein cascades: gain and kinetics. Trends Neurosci 15:291–298

    Google Scholar 

  • Larsen LO (1984) Feeding in adult toads: physiology, behaviour, ecology. Vidensk Meddr Dansk Naturh Foren 147:97–116

    Google Scholar 

  • Larsen LO (1992) Feeding and digestion. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. The University of Chicago Press, Chicago, pp 378–394

    Google Scholar 

  • Larsen LO, Pedersen JN (1982) The snapping response of the toad, Bufo bufo, towards prey dummies at very low light intensities. Amphibia-Reptilia 2:321–327

    Google Scholar 

  • Lescure J (1965) L'alimentation et le comportement de prédation chez Bufo bufo (Linnaeus, 1758). Thès Fac Sci Univ Paris, Série 4:4657

    Google Scholar 

  • Lescure J (1982) Le comportement alimentaire. In: Grassé PP (ed) Traité de Zoologie, Amphibiens 2:215–222

  • Lock A, Collett T (1979) A toad's devious approach to its prey: a study of some complex uses of depth vision. J Comp Physiol 131:179–189

    Google Scholar 

  • Mansfield RJW, Daugman JG (1978) Retinal mechanisms of visual latency. Vision Res 18:1247–1260

    Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175

    Google Scholar 

  • Putnam RW, Bennett AF (1981) Thermal dependence of behavioural performance of anuran amphibians. Anim Behav 29:502–509

    Google Scholar 

  • Reuter T, Virtanen K (1976) Color discrimination mechanisms in the retina of the toad (Bufo bufo). J Comp Physiol 109:337–343

    Google Scholar 

  • Schneider D (1954) Beitrag zu einer Analyse des Beuteund Fluchtverhaltens einheimischer Anuren. Biol Zbl 73:225–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aho, A.C., Donner, K., Helenius, S. et al. Visual performance of the toad (Bufo bufo) at low light levels: retinal ganglion cell responses and prey-catching accuracy. J Comp Physiol A 172, 671–682 (1993). https://doi.org/10.1007/BF00195393

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195393

Key words

Navigation