Skip to main content
Log in

Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster

I. Wildtype visual system

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

We have screened antibodies for immunocytochemical staining in the optic lobes of the brain of Drosophila melanogaster. Seven polyclonal antisera and five monoclonal antibodies are described that selectively and reproducibly stain individual cells and/or produce characteristic staining patterns in the neuropile. Such antisera are useful for the cellular characterization of molecular and structural brain defects in visual mutants. In the wildtype visual system we can at present separately stain the following: the entire complement of columnar “ T 1” neurons; a small set of presumptive serotonergic neurons; some 3000 cells that contain and synthesize γ-amino butyric acid (GABA); and three groups of cells that bind antibodies to Ca2+-binding proteins. In addition, small groups of hitherto unknown tangential cells that send fine arborizations into specific strata of the medulla, and two patterns of characteristic layers in the visual neuropile have been identified by use of monoclonal antibodies generated following immunization of mice with homogenates of the brain of Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baimbridge KG, Miller JJ, Parkes CO (1982) Calcium-binding protein, distribution in the rat brain. Brain Res 239:519–525

    Google Scholar 

  • Braun K. Scheich H, Schachner M, Heizmann CW (1985) Distribution of parvalbumin, cytochrome oxidase activity and 2-deoxyglucose-C-14 uptake in the brain of the zebra finch. 1. Auditory and vocal motor systems. Cell Tissue Res 240:101–115

    Google Scholar 

  • Breer H, Heilgenberg H (1985) Neurochemistry of GABA-ergic activities in the central nervous system of Locusta migratoria. J Comp Physiol A 157:343–354

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff H (1984) Identification of 3H-deoxyglucose-labelled interneurons in the fly from serial autoradiographs. Brain Res 305:384–388

    Google Scholar 

  • Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Satelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62

    Google Scholar 

  • Budnik V, White K (1988) Catecholamine-containing neurons in Drosophila melanogaster: distribution and development. J Comp Neurol 268:400–413

    CAS  PubMed  Google Scholar 

  • Budnik V, Martin-Morris L, White K (1986) Perturbed pattern of catecholamine-containing neurons in mutant Drosophila deficient in the enzyme dopa decarboxylase. J Neurosci 6:3682–3691

    Google Scholar 

  • Campos-Ortega JA (1974) Autoradiographic localization of 3H-γ-aminobutyric acid uptake in the lamina ganglionaris of Musca and Drosophila. Z Zellforsch 147:415–431

    Google Scholar 

  • Cox JA (1986) Isolation and characterization of a new Mr-18,000 protein with calcium vector properties in Amphioxus muscle and identification of its endogenous target. J Biol Chem 261:13173–13178

    Google Scholar 

  • Datum KH, Weiler R, Zettler F (1986) Immunocytochemical demonstration of γ-aminobutyric acid and glutamic acid decarboxylase in R 7 photoreceptors and C2 centrifugal fibres of the blowfly visual system. J Comp Physiol 159:241–249

    Google Scholar 

  • Duve H, Thorpe A, Strausfeld NJ (1983) Cobalt-immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J Neurocytol 12:847–861

    Google Scholar 

  • Fischbach KF (1983) Neurogenetik am Beispiel des visuellen Systems von Drosophila melanogaster. Habilitationsschrift, Universität Würzburg, FRG

    Google Scholar 

  • Fischbach KF, Heisenberg M (1984) Neurogenetics and behaviour in insects. J Exp Biol 112:65–93

    Google Scholar 

  • Frontali N, Pierantoni R (1973) Autoradiographic localization of 3H-GABA in the cockroach brain. Comp Biochem Physiol 44A:1369–1372

    Google Scholar 

  • Fujita SC, Zipurski SL, Benzer S, Ferrus A, Shotwell SL (1982) Monoclonal antibodies against the Drosophila nervous system. Proc Natl Acad Sci USA 79:7929–7933

    Google Scholar 

  • Garcia-Segura LM, Baetens D, Roth B, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium-binding protein immunoreactivity in the central nervous system. Brain Res 296:75–86

    Google Scholar 

  • Gorczyca MG, Hall JC (1987) Immunohistochemical localization of choline acetyltransferase during development and in Chats mutants of Drosophila melanogaster. J Neurosci 7:1361–1369

    Google Scholar 

  • Gordon D, Zlotkin E, Kanner B (1982) Functional membrane vesicles from the nervous system of insects. I. Sodiumand chloride-dependent γ-aminobutyric acid transport. Biochem Biophys Acta 688:229–236

    Google Scholar 

  • Hall JC (1982) Genetics of the nervous system in Drosophila. Q Rev Biophys 15:223–479

    Google Scholar 

  • Hardie RC (1988) Neurotransmitters in compound eyes. In: Facets of Vision. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Heizmann CW, Berchtold MW (1987) Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 8:1–41

    Google Scholar 

  • Heizmann CW, Celio MR (1987) Immunolocalization of parvalbumin. Methods Enzymol 139:552–570

    Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294:765–767

    Google Scholar 

  • Kaufman DL, McGinnis JF, Krieger NR, Tobin AJ (1986) Brain glutamate decarboxylase cloned in λgt-11: Fusion protein produces γ-aminobutyric acid. Science 232:1138–1140

    Google Scholar 

  • Klemm N, Sundler F (1983) Organization of catecholamine and serotonin-immunoreactive neurons in the corpora pendunculata of the desert locust, Schistocerca gregaria Fork. Neurosci Lett 36:13–17

    Google Scholar 

  • Kohler L, Cox JA, Stein EA (1978) Sarcoplasmic calcium-binding proteins in prochordate and cyclostome muscle. Mol Cell Biochem 20:85–93

    Google Scholar 

  • Levy LS, Maning JE (1981) Messenger RNA sequence complexity and homology in developmental stages of Drosophila. Dev Biol 85:141–149

    Google Scholar 

  • McLean IW, Nakone PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    CAS  PubMed  Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    Google Scholar 

  • Nässel DR (1987) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol (in press)

  • Nässel DR, Elekes K (1984) Ultrastructural demonstration of serotonin-immunoreactivity in the nervous system of an insect (Calliphora erythrocephala). Neurosci Lett 48:203–210

    Google Scholar 

  • Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140

    Google Scholar 

  • Nässel DR, Hagberg M, Seyan HS (1983) A new, possibly serotonergic neuron in the lamina of the blowfly optic lobe: an immuno-cytochemical and Golgi-EM study. Brain Res 280:361–367

    Google Scholar 

  • Nässel DR, Meyer EP, Klemm N (1985) Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. J Comp Neurol 232:190–204

    Google Scholar 

  • Nässel DR, Ohlsson L, Sivasubramanian P (1987) Postembryonic differentiation of serotonin-immunoreactive neurons in fleshfly optic lobes developing in situ or cultured in vivo without eye discs. J Comp Neurol 255:327–340

    Google Scholar 

  • Oertel WH, Schmechel DE, Mugnaini E, Tappaz ML, Kopin IJ (1981) Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience 6:2715–2755

    Google Scholar 

  • Piront A, Gosselin RC (1974) Immunological cross-reactivity among cyprinidae parvalbumins. Biochem Syst Ecol 2:103–107

    Google Scholar 

  • Roth J, Bonner-Weir S, Norman AW, Orci L (1982) Immunocytochemistry of vitamin D-dependent calcium-binding protein in chick pancreas: exclusive localization in B-cells. Endocrinology 111:216–218

    Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300

    Google Scholar 

  • Stichel CC, Kägi U, Heizmann CW (1986) Parvalbumin in cat brain: Isolation, characterization and localization. J Neurochem 47:46–53

    Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug F-MS, Ottersen OP (1983) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301:517–520

    Google Scholar 

  • Strausfeld NJ (1983) Functional Neuroanatomy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Takagi T, Komishi K, Cox JA (1986) Amino acid sequence of two sarcoplasmic calcium-binding proteins from the protochordate Amphioxus. Biochemistry 25:3585–3592

    Google Scholar 

  • Vallés AM, White K (1986) Development of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin. J Neurosci 6:1482–1491

    Google Scholar 

  • Vallés AM, White K (1988) Serotonin-containing neurons in Drosophila melanogaster: distribution and development. J Comp Neurol 268:414–428

    CAS  PubMed  Google Scholar 

  • White K, Hurteau T, Punsal P (1986) Neuropeptide-FMRFamidelike immunoreactivity in Drosophila: Development and distribution. J Comp Neurol 247:430–438

    Google Scholar 

  • Zipurski SL, Venkatesh TR, Teplow DB, Benzer S (1984) Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36:15–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchner, E., Bader, R., Buchner, S. et al. Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster . Cell Tissue Res. 253, 357–370 (1988). https://doi.org/10.1007/BF00222292

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222292

Key words

Navigation