Skip to main content
Log in

Evidence for respiratory interneurones in the C3-C5 cervical spinal cord in the decorticate rabbit

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In mammals, it has long been considered that the bulbo-spinal inspiratory drive provided a direct (monosynaptic) excitation of phrenic motoneurones (Phr Mns). Although such connections have been demonstrated, recent indirect data strongly suggested that the main inspiratory drive is polysynaptic. We tried to directly demonstrate relay respiratory interneurones at the C3–C6 spinal cord level where the Phr Mn pool is located. The experiments were performed on decorticate, unanaesthetized, bilaterally vagotomized and curarized rabbits and the firing pattern of spinal interneurones was compared to the phrenic bursting. Dorsally and dorso-medially to the Phr Mn pool, different classes of inspiratory (54%) and expiratory (46%) interneurones could be identified in the ventral horn. Three classes of inspiratory interneurones were characterized and classified as “I all” (26%), “I late” (43%) and “I tonic” (29%) according to the terminology used by other authors for the bulbospinal inspiratory neurones which drive the spinal respiratory motoneurones. The expiratory interneurones could also be divided into 3 classes: “E all” (48%), “E late” (10%) and “E tonic” (41%). This first direct evidence of inspiratory interneurones at the C3–C6 spinal cord levels can account for the major polysynaptic excitation of the Phr Mns while the presence of numerous expiratory interneurones at this level suggests a polysynaptic bulbo-spinal inhibitory action onto the Phr Mns. These classes of inspiratory and expiratory interneurones did not always coincide with the bulbo-spinal classes of neurones described elsewhere. Unless these discrepancies are due to the different experimental conditions, they may indicate that some of these interneurones are not just relay target cells and they suggest that they might behave as integrative operators between the medullary drive and the Phr Mns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoki M, Mori S, Kawahara K, Watanabe H, Ebata N (1980) Generation of spontaneous respiratory rhythm in high spinal cats. Brain Res 202: 51–63

    Google Scholar 

  • Aoki M, Watanabe H, Ebata N, Mori S (1978) Spontaneous respiratory activity in spinal cats. Brain Res 157: 376–381

    Google Scholar 

  • Bianchi A (1971) Localisation et étude des neurones respiratoires bulbaires. J Physiol (Paris) 63: 5–40

    Google Scholar 

  • Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59: 1105–1173

    Google Scholar 

  • Cohen MI, Piercey MF, Gootman PM, Wolotsky P (1974) Synaptic connections between medullary inspiratory neurons and phrenic motoneurons as revealed by cross correlation. Brain Res 81: 319–324

    Google Scholar 

  • Cohen MI, Feldman JL (1984) Discharge properties of dorsal medullary inspiratory neurons: relation to pulmonary afferent and phrenic efferent discharge. J. Neurophysiol 51: 753–776

    Google Scholar 

  • Davies JG McF, Kirkwood PA, Sears TA (1985a) The detection of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones in the cat. J Physiol (Lond) 368: 33–62

    Google Scholar 

  • Davies JG McF, Kirkwood PA, Sears TA (1985b) The distribution of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones of the cat. J Physiol (Lond) 368: 63–88

    Google Scholar 

  • Duffin J, Eipski J (1987) Monosynaptic excitation of thoracic motoneurones by inspiratory neurones of the nucleus tractus solitarius in the cat. J Physiol (Eond) 390: 415–432

    Google Scholar 

  • Duron B, Marlot D, Larnicol N, Jung Caillol MC, Macron JM (1979) Somatotopy in the phrenic motor nucleus of the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 14: 159–163

    Google Scholar 

  • Fedorko E, Merrill EG (1984) Axonal projections from the rostral respiratory neurones of the Bötzinger complex to medulla and spinal cord. J Physiol (Lond) 350: 487–496

    Google Scholar 

  • Fedorko E, Merrill EG, Eipski J (1983) Two descending medullary inspiratory pathways to phrenic motoneurones. Neurosci Lett 43: 285–292

    Google Scholar 

  • Feldman JE, Loewy AD, Speck DF (1985) Projections from the ventral respiratory group to phrenic and intercostal motoneurons in cat: an autoradiographic study. J Neurosci 5: 1993–2000

    Google Scholar 

  • Feldman JL, Speck DF (1983) Interactions among inspiratory neurons in dorsal and ventral respiratory groups in cat medulla. J Neurophysiol 49: 472–490

    Google Scholar 

  • Gauthier P, Monteau R (1984) Inspiratory on-switch evoked by stimulation of the mesencephalon: activity of medullary respiratory neurones. Exp Brain Res 56: 475–487

    Google Scholar 

  • Graham K, Duffin J (1982) Cross correlation of medullary dorsomedial inspiratory neurons in the cat. Exp Neurol 75: 627–643

    Google Scholar 

  • Green JD (1958) A simple microelectrode for recording from the central nervous system. Nature 182: 962

    Google Scholar 

  • Hilaire G, Khatib M, Monteau R (1983) Spontaneous respiratory activity of phrenic and intercostal Renshaw cells. Neurosci Lett 43: 97–102

    Google Scholar 

  • Hilaire G, Khatib M, Monteau R (1986) Central drive on Renshaw cells coupled with phrenic motoneurons. Brain Res 376: 133–139

    Google Scholar 

  • Hilaire G, Monteau R (1976) Connexions entre les neurones inspiratoires bulbaires et les motoneurones phréniques et intercostaux. J Physiol (Paris) 72: 987–1000

    Google Scholar 

  • Hilaire G, Monteau R, Dussardier M (1972) Modalités du recrutement des motoneurones phréniques. J Physiol Paris 64: 457–478

    Google Scholar 

  • Jiang C, Wu KH, Shen E (1987) Antidromic mapping of descending axons of respiratory bulbospinal neurons in the nucleus tractus solitarius of the rabbit. Brain Res 413: 189–192

    Google Scholar 

  • Kirkwood P, Sears T (1973) Monosynaptic excitation of thoracic expiratory motoneurones from lateral respiratory neurones in the medulla of the cat. J Physiol (Lond) 234: 87P-89P

    Google Scholar 

  • Kirkwood PA, Munson JB, Sears TA, Westgaard RH (1988) Respiratory interneurones in the thoracic spinal cord of the cat. J Physiol (Lond) 395: 161–192

    Google Scholar 

  • Lipski J, Fyffre REW, Jodkowski J (1985) Recurrent inhibition of cat phrenic motoneurons. J Neurosci 15: 1545–1555

    Google Scholar 

  • Lipski J, Merrill EG (1983) Inputs to intercostal motoneurones from ventrolateral medullary respiratory neurones in nembutal-anaesthetized cats. J Physiol (Lond) 339: 25–26P

    Google Scholar 

  • Merrill EG, Lipski J (1987) Inputs to intercostal motoneurons from ventrolateral medullary respiratory neurons in the cat. J Neurophysiol 57: 1837–1853

    Google Scholar 

  • Mesulam MM, Hegarty E, Barbas H, Carson KA, Gower EC, Knapp AG, Moss MB, Mufson EJ (1980) Additional factors influencing sensitivity in the tetramethylbenzidine method for horseradish peroxidase neurohistochemistry. J Histochem Cytochem 28: 1255–1259

    Google Scholar 

  • Nakayama S, von Baumgarten R (1964) Lokalisierung absteigender Atmungsbahnen im Rückenmark der Katze mittels antidromer Reizung. Pflügers Arch Ges Physiol 281: 213–244

    Google Scholar 

  • Nelson JR (1959) Single unit activity in medullary respiratory centers of cat. J Neurophysiol 22: 590–598

    Google Scholar 

  • Palisses R, Viala D (1987) Existence d'interneurones respiratoires dans la moelle cervicale du lapin. CR Acad Sci Ser III 305: 321–324

    Google Scholar 

  • Pitts RF (1942) The function of components of the respiratory complex. J Neurophysiol 5: 403–413

    Google Scholar 

  • Rikard-Bell G, Bystrzycka E (1980) Localization of phrenic motor nucleus in the cat and rabbit studied with horseradish peroxidase. Brain Res 194: 479–483

    Google Scholar 

  • Satomi H, Takahashi K, Aoki M, Kasaba T, Kurosawa Y, Otsuka K (1984) Localization of the spinal accessory nucleus in the cervical cord of cats. Neurosci Lett Suppl 17: S55

    Google Scholar 

  • Satomi H, Takahashi K, Aoki M, Kasaba T, Kurosawa Y, Otsuka K (1985). Localization of the spinal accessory motoneurons in the cervical cord in connection with the phrenic nucleus: an HRP study in cats. Brain Res 344: 227–230

    Google Scholar 

  • Ullah M (1978) Localization of the phrenic nucleus in the spinal cord of the rabbit. J Anat 125: 377–386

    Google Scholar 

  • Viala D, Freton E (1983) Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions. Exp Brain Res 49: 247–256

    Google Scholar 

  • Viala D, Vidai C, Freton E (1980) Mise en évidence de générateurs de rythmes locomoteurs et de rythmes “respiratoires” dans la moelle cervico-thoracique du lapin. CR Acad Sci (Paris) 291 D: 573–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palisses, R., Perségol, L. & Viala, D. Evidence for respiratory interneurones in the C3-C5 cervical spinal cord in the decorticate rabbit. Exp Brain Res 78, 624–632 (1989). https://doi.org/10.1007/BF00230250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230250

Key words

Navigation