Skip to main content
Log in

A Calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We recently reported that M-1 mouse cortical collecting duct cells show nonselective cation (NSC) channel activity (Proc. Natl. Acad. Sci. USA 89:10262–10266, 1992). In this study, we further characterize the M-1 NSC channel using single-channel current recordings in excised inside-out patches. The M-1 NSC channel does not discriminate between Na+, K+, Rb+, Cs+, and Li+. It has a linear I-V relation with a conductance of 22.7±0.5 pS (n=78) at room temperature. The Pcation/ Panion ratio is about 60 and there is no measurable conductance for NMDG, Ca2+, Ba2+, and Mn2+. Cytoplasmic calcium activates the M-1 NSC channel at a threshold of 10−6 m and depolarization increases channel activity (NP o ). Cytoplasmic application of adenine nucleotides inhibits the M-1 NSC channel. At doses of 10−4 m and 10−3 m, ATP reduces NP o by 23% and 69%, respectively.

Furthermore, since ADP (10−3 m) reduces NP o by 93%, the inhibitory effect of adenine nucleotides is not dependent on the presence of a γ-phosphoryl group and therefore does not involve protein phosphorylation. The channel is not significantly affected by 8-Br-cGMP (10−4 m) or by cGMP-dependent protein kinase (10−7 m) in the presence of 8-Br-cGMP (10−5 m) and ATP (10−4 m). The NSC channel is not sensitive to amiloride (10−4 m cytoplasmic and/or extracellular) but flufenamic acid (10−4 m) produces a voltage-dependent block, reducing NP o by 35% at depolarizing voltages and by 80% at hyperpolarizing voltages.

We conclude that the NSC channel of M-1 mouse cortical collecting duct cells belongs to an emerging family of calcium-activated and nucleotide-sensitive nonselective cation channels. It does not contribute to amiloride-sensitive sodium absorption and is unlikely to be a major route for calcium entry. The channel is normally quiescent but may be activated under special physiological conditions, e.g., during volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, I., Korbmacher, C., Segal, A.S., Cheung, P., Boulpaep, E.L., Barnstable, C.J. 1992. Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated photoreceptor channel. Proc. Natl. Acad. Sci. USA 89:10262–10266

    Google Scholar 

  • Benham, C.D., Tsien, R.W. 1987. A novel receptor-operated Ca2+- permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Google Scholar 

  • Bennett, N., Ildefonse, M., Crouzy, S., Chapron, Y., Clerc, A. 1989. Direct activation of cGMP-dependent channels of retinal rods by the cGMP phosphodiesterase. Proc. Natl Acad. Sci. USA 86:3634–3638

    Google Scholar 

  • Breyer, M.D. 1991. Regulation of salt and water transport in collecting duct through calcium-dependent signaling mechanisms. Am. J. Physiol 260:F1-F11

    Google Scholar 

  • Breyer, M.D., Ando, Y. 1994. Hormonal signaling and regulation of salt and water transport in the collecting duct. Annu. Rev. Physiol. 56:711–739

    Google Scholar 

  • Butt, E., Nolte, C., Schulz, S., Beltman, J., Beavo, J.A., Jastorff, B., Walter, U. 1992. Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochem. Pharmacol. 43:2591–2600

    Google Scholar 

  • Champigny, G., Verrier, B., Lazdunski, M. 1991. A voltage, calcium, and ATP sensitive nonselective cation channel in human colonic tumor cells. Biochem. Biophys, Res. Comm. 176:1196–1203

    Google Scholar 

  • Chan, H.C., Nelson, D.J. 1992. Chloride-dependent cation conductance activated during cellular shrinkage. Science 257:669–671

    Google Scholar 

  • Changeux, J.-P., Devillers-Thiéry, A., Chemouilli, P. 1984. Acetylcholine receptor: An allosteric protein. Science 225:1335–1345

    Google Scholar 

  • Chen, T.Y., Peng, Y.-W., Dhallan, R.S., Ahamed, B., Reed, R.R., Yau, K.-W. 1993. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362:764–767

    Google Scholar 

  • Chraibi, A., Van den Abbeele, T., Guinamard, R., Teulon, J. 1994. A ubiquitous non-selective cation channel in the mouse renal tubule with variable sensitivity to calcium. Pfluegers Arch. 429:90–97

    Google Scholar 

  • Christensen, O. 1987. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330:66–68

    Google Scholar 

  • Cook, D.I., Poronnik, P., Young, J.A. 1990. Characterization of a 25-pS nonselective cation channel in a cultured secretory epithelial cell line. J. Membrane Biol. 114:37–52

    Google Scholar 

  • Fasolato, C., Hoth, M., Matthews, G., Penner, R. 1993. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc. Natl. Acad. Sci. USA 90:3068–3072.

    Google Scholar 

  • Filipovic, D., Sackin, H. 1991. A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am. J. Physiol. 260:F119-F129

    Google Scholar 

  • Filipovic, D., Sackin, H. 1992. Stretch- and volume-activated channels in isolated proximal tubule cells. Am. J. Physiol. 262:F857-F870

    Google Scholar 

  • Friedman, P.A., Gesek, F.A. 1993. Calcium transport in renal epithelial cells. Am. J. Physiol. 264:F181-F198

    Google Scholar 

  • Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 68:309–373

    Google Scholar 

  • Gögelein, H., Dahlem, D., Englert, H.C., Lang, H.J. 1990. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett. 268:79–82

    Google Scholar 

  • Gögelein, H., Greger, R. 1986. A voltage-dependent ionic channel in the basolateral membrane of late proximal tubules of the rabbit kidney. Pfluegers Arch. 407:S142-S148

    Google Scholar 

  • Gögelein, H., Pfannmüller, B. 1989. The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Pfluegers Arch. 413:287–298

    Google Scholar 

  • Guharay, F., Sachs, F. 1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100

    Google Scholar 

  • Hanke, W., Cook, N.J., Kaupp, U.B. 1988. cGMP-dependent channel protein from photoreceptor membranes: Single-channel activity of the purified and reconstituted protein. Proc. Natl. Acad. Sci. USA 85:94–98

    Google Scholar 

  • Kaupp, U.B. 1991. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends in Neuroscience 14:150–157

    Google Scholar 

  • Korbmacher, C., Barnstable, C.J. 1993. Renal epithelial cells show nonselective cation channel activity and express a gene related to the cGMP-gated photoreceptor channel. In: Nonselective cation channels: Pharmacology, Physiology and Biophysics. D. Siemen and J.K.-J. Hescheler, editors. pp, 147–164. Birkhäuser Verlag, Basel, Switzerland

    Google Scholar 

  • Korbmacher, C., Boulpaep, E.L., Giebisch, G., Geibel, J. 1993b. Endothelin increases [Ca2+] i in M-1 mouse cortical collecting duct cells by a dual mechanism. Am. J. Physiol. 265:C349-C357

    Google Scholar 

  • Korbmacher, C., Segal, A.S., Boulpaep, E.L. 1992a. Ion channels in a mouse cortical collecting duct cell line. Renal Physiol. Biochem. 15:180 (Abstr.)

    Google Scholar 

  • Korbmacher, C., Segal, A.S., Fejes-Tóth, G., Giebisch, G., Boulpaep, E.L. 1993c. Whole-cell currents in single and confluent M-1 mouse cortical collecting duct cells. J. Gen. Physiol. 102:761–793

    Article  CAS  PubMed  Google Scholar 

  • Korbmacher, C., Segal, A.S., Volk, T., Boulpaep, E.L., Frömter, E. 1993a. Effects of calcium, ATP and flufenamic acid on nonselective cation channel activity in M-1 mouse cortical collecting duct cells. Pfluegers Arch. 422(Suppl. No. 1):R65. (Abstr.)

    Google Scholar 

  • Korbmacher, C., Volk, T., Frömter, E. 1994. Hypertonicity activates nonselective cation channels in M-1 mouse cortical collecting duct cells. JASN. 5:289 (Abstr.)

    Google Scholar 

  • Laskowski, F.H., Christine, C.W., Gitter, A.H., Beyenbach, K.W., Gross, P., Frömter, E. 1990. Cation channels in the apical membrane of collecting duct principal cell epithelium in culture. Renal Physiol. Biochem. 13:70–81

    Google Scholar 

  • Light, D.B., Corbin, J.D., Stanton, B.A. 1990. Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–339

    Google Scholar 

  • Light, D.B., McCann, F.V., Keller, T.M., Stanton, B.A. 1988. Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255:F278-F286

    Google Scholar 

  • Light, D.B., Schwiebert, E.M., Karlson, K.H., Stanton, B.A. 1989. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–385

    Google Scholar 

  • Ling, B.N., Hinton, C.F., Eaton, D.C. 1991. Potassium permeable channels in primary cultures of rabbit cortical collecting tubule. Kidney Int. 40:441–452

    Google Scholar 

  • Marom, S., Dagan, D., Winaver, J., Palti, Y. 1989. Brush-border membrane cation conducting channels from rat kidney proximal tubules. Am. J. Physiol. 257:F328-F335

    Google Scholar 

  • Maruyama Y., Peterson O.H. 1982. Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299:159–161

    Google Scholar 

  • Merot, J., Bidet, M., Gachot, B., Le Maout, S., Tauc, M., Poujeoul, P. 1988. Patch-clamp study on primary culture of isolated proximal convoluted tubules. Pfluegers Arch. 413:51–61

    Google Scholar 

  • Merot, J., Poncet, V., Bidet, M., Tauc, M., Poujeol, P. 1991. Apical membrane ionic channels in the rabbit cortical thick ascending limb in primary culture. Biochim. Biophys. Acta. 1070:387–400

    Google Scholar 

  • Naruse, M., Uchida, S., Ogata, E., Kurokawa, K. 1991. Endothelin 1 increases cell calcium in mouse collecting tubule cells. Am. J. Physiol. 261:F720-F725

    Google Scholar 

  • Natke, E. Jr. 1990. Cell volume regulation of rabbit cortical collecting tubule in anisotonic media. Am. J. Physiol. 258:F1657-F1665

    Google Scholar 

  • Neher, E. 1992. Controls on calcium influx. Nature 355:298–299

    Google Scholar 

  • Nilius, B. 1990. Permeation properties of a nonselective cation channel in human vascular endothelial cells. Pfluegers Arch. 416:609–611

    Google Scholar 

  • Nilius, B., Schwartz, G., Oike, M., Droogmans, G. 1993. Histamineactivated, non-selective cation currents and Ca2+ transients in endothelial cells from human umbilical vein. Pfluegers Arch. 424:285–293

    Google Scholar 

  • O'Neil, R.G., Boulpaep, E.L. 1979. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium. J. Membrane Biol. 50:365–387

    Google Scholar 

  • O'Neil, R.G., Boulpaep, E.L. 1982. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243:F81-F95

    Google Scholar 

  • Ono, S., Mougouris, T., DuBose, Jr., T.D., Sansom, S.C. 1994. ATP and calcium modulation of nonselective cation channels in IMCD cells. Am. J. Physiol. 267:F558-F565

    Google Scholar 

  • Palmer, L.G. 1992. Epithelial Na channels; Function and diversity. Annu. Rev. Physiol. 54:51–66

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1988. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li. J. Gen. Physiol. 92:121–138

    Google Scholar 

  • Partridge, L.D., Swandulla, D. 1988. Calcium-activated non-specific cation channels. Trends in Neuroscience 11:69–72

    Google Scholar 

  • Paulais, M., Teulon, J. 1989. A cation channel in the thick ascending limb of Henle's loop of the mouse kidney: Inhibition by adenine nucleotides. J. Physiol. 413:315–327

    Google Scholar 

  • Poncet, V., Merot, J., Poujeol, P. 1992. A calcium-permeable channel in the apical membrane of primary cultures of the rabbit distal bright convoluted tubule. Pfluegers Arch. 422:112–119

    Google Scholar 

  • Popp, R., Gögelein, H. 1992. A calcium and ATP sensitive nonselective cation channel in the antiluminal membrane of rat cerebral capillary endothelial cells. Biochim. Biophys. Acta 1108:59–66

    Google Scholar 

  • Siemen, D. 1993. Nonselective cation channels. In: Nonselective Cation Channels: Pharmacology, Physiology and Biophysics. D. Siemen and J.K.-J. Hescheler, editors. pp. 3–25. Birkhäuser Verlag Basel, Switzerland

    Google Scholar 

  • Siemer, C., Gögelein, H. 1992. Activation of nonselective cation channels in the basolateral membrane of rat distal colon crypt cells by prostaglandin E2. Pfluegers Arch. 420:319–328

    Google Scholar 

  • Siemer, C., Gögelein, H. 1993. Effects of forskolin on crypt cells of rat distal colon. Pfluegers Arch. 424:321–328

    Google Scholar 

  • Sigworth, F.J., Sine, S.M. 1987. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52:1047–1054

    Google Scholar 

  • Stoos, B.A., Náray-Fejes-Tóth, A., Carretero, O.A., Ito, S., Fejes-Tóth, G. 1991. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 39:1168–1175

    Google Scholar 

  • Sturgess, N.C., Hales, C.N., Ashford, M.L.J. 1987. Calcium and ATP regulate the activity of non-selective cation channel in a rat insulinoma cell line. Pfluegers Arch. 409:607–615

    Google Scholar 

  • Sun, A., Hebert, S.C. 1989. Rapid hypertonic cell volume regulation in the perfused inner medullary collecting duct. Kidney Int. 36:831–842

    Google Scholar 

  • Teulon, J., Paulais, M., Bouthier, M. 1987. A Ca2+ activated cation-selective channel in the basolateral membrane of the cortical thick ascending limb of Henle's loop of the mouse. Biochim. Biophys. 905:125–132

    Google Scholar 

  • Tohda, H., Foskett, J.K., O'Brodovich, H., Marunaka, Y. 1994. Cl regulation of a Ca2+-activated nonselective cation channel in β-ag-onist-treated fetal distal lung epithelium. Am. J. Physiol. 266:C104-C109

    Google Scholar 

  • Thorn, P., Petersen, O.H. 1992. Activation of nonselective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. J. Gen. Physiol. 100:11–25

    Google Scholar 

  • Uchida, S., Endou, H. 1988. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. 255:F977-F983

    Google Scholar 

  • Van den Abbeele, T., Huy, P.T.B., Teulon, J. 1994. A calciumactivated nonselective cationic channel in the basolateral membrane of outer hair cells of the guinea-pig cochlea. Pfluegers Arch. 417:56–63

    Google Scholar 

  • Volk, T., Korbmacher, C., Frömter, E. 1994. Hypertonicity induces a nonselective cation conductance in M-1 mouse cortical collecting duct cells. Pfluegers Arch. 426:129 (Abstr.)

    Google Scholar 

  • von Tscharner, V., Prod'hom, B., Baggiolini, M., Reuter, H. 1986. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324:369–372

    Google Scholar 

  • Walter, U., Miller, P., Wilson, F., Menkes, D., Greengard, P. 1980. Immunological distinction between guanosine 3′∶5′-monophosphate-dependent and adenosine 3′∶5′-monophosphate-dependent protein kinases. J. Biol. Chem. 255:3757–3762

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687–708

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman, A.L., Baylor, D.A. 1986. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321:70–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The expert technical assistance of U. Fink and I. Doering-Hirsch is gratefully acknowledged. We thank A. Rabe and Dr. J. Disser for programming the computer software.

This work was supported by a grant from the Deutsche Forschungsge-meinschaft (DFG grant Fr 233/9-1) and a grant from the National Institutes of Health (NIH grant DK-17433).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korbmacher, C., Volk, T., Segal, A.S. et al. A Calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membarin Biol. 146, 29–45 (1995). https://doi.org/10.1007/BF00232678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232678

Key words

Navigation