Skip to main content
Log in

Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Dynamic aspects of the computation of visual motion information are analysed both theoretically and experimentally. The theoretical analysis is based on the type of movement detector which has been proposed to be realized in the visual system of insects (e.g. Hassenstein and Reichardt 1956; Reichardt 1957, 1961; Buchner 1984), but also of man (e.g. van Doorn and Koenderink 1982a, b; van Santen and Sperling 1984; Wilson 1985). The output of both a single movement detector and a one-dimensional array of detectors is formulated mathematically as a function of time. The resulting movement detector theory can be applied to a much wider range of moving stimuli than has been possible on the basis of previous formulations of the detector output. These stimuli comprise one-dimensional “smooth” detector input functions, i.e. functions which can be expanded into a time-dependent convergent Taylor series for any value of the spatial coordinate.

The movement detector response can be represented by a power series. Each term of this series consists of one exclusively time-dependent component and of another component that depends, in addition, on the properties of the pattern. Even the exclusively time-dependent components of the movement detector output are not solely determined by the stimulus velocity. They rather depend in a non-linear way on the weighted sum of the instantaneous velocity and all its higher order time derivatives. The latter point represents another reason — not discussed so far in the literature — that movement detectors of the type analysed here do not represent pure velocity sensors.

The significance of this movement detector theory is established for the visual system of the fly. This is done by comparing the spatially integrated movement detector response with the functional properties of the directionally-selective motion-sensitive. Horizontal Cells of the third visual ganglion of the fly's brain.

These integrate local motion information over large parts of the visual field. The time course of the spatially integrated movement detector response is about proportional to the velocity of the stimulus pattern only as long as the pattern velocity and its time derivatives are sufficiently small. For large velocities and velocity changes of the stimulus pattern characteristic deviations of the response profiles from being proportional to pattern velocity are predicted on the basis of the detector theory developed here. These deviations are clearly reflected in the response of the wide-field Horizontal Cells, thus, providing very specific evidence that the movement detector theory developed here can be applied to motion detection in the fly. The characteristic dynamic features of the theoretically predicted and the experimentally determined cellular responses are exploited to estimate the time constant of the movement detector filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    PubMed  Google Scholar 

  • Anderson SJ, Burr DC (1985) Spatial and temporal selectivity of the human motion detection system. Vision Res 8:1147–1154

    Article  Google Scholar 

  • Baker LB, Braddick OJ (1985) Temporal properties of the short-range process in apparent motion. Perception 14:181–192

    PubMed  Google Scholar 

  • Borst A, Bahde S (1987) Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly. Biol Cybern (in press)

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern (in press)

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed). Photoreception and vision in invertebrates. Plenum Press, New York London, pp 561–621

    Google Scholar 

  • Burr DC, Ross J (1982) Contrast sensitivity at high velocities. Vision Res 22:479–484

    Article  PubMed  Google Scholar 

  • Chang JJ, Julesz B (1983) Displacement limits, directional anisotropy and direction versus form discrimination in random-dot cinematograms. Vision Res 23:639–646

    Article  PubMed  Google Scholar 

  • De Voe RD (1980) Movement sensitivities of cells in the fly's medulla. J Comp Physiol 138:93–119

    Article  Google Scholar 

  • Diener HC, Wist ER, Dichgans J, Brandt T (1976) The spatial frequency effect on perceived velocity. Vision Res 16:169–176

    Article  PubMed  Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179–188

    PubMed  Google Scholar 

  • van Doorn AJ, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving white noise. Exp Brain Res 45:189–195

    PubMed  Google Scholar 

  • van Doorn AJ, Koenderink JJ (1984) Spatiotemporal integration in the detection of coherent motion. Vision Res 24:47–53

    Article  PubMed  Google Scholar 

  • van Doorn AJ, Koenderink JJ, van de Grind WA (1985) Perception of movement and correlation in stroboscopically presented noise patterns. Perception 14:209–224

    PubMed  Google Scholar 

  • Eckert H (1973) Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik 14:1–23

    Article  PubMed  Google Scholar 

  • Eckert H (1980) Functional properties of the H1-neurone in the third optic ganglion of the blowfly,Phaenicia. J Comp Physiol 135:29–39

    Article  Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Article  Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280

    Article  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92

    Article  PubMed  Google Scholar 

  • Götz KG (1965) Die optischen Übertragungseigenschaften der Komplexaugen vonDrosophila. Kybernetik 2:215–221

    Article  PubMed  Google Scholar 

  • Götz KG (1972) Principles of optomotor reactions in insects. Bibl Ophthalmol 82:251–259

    PubMed  Google Scholar 

  • Gradshteyn IS, Ryzhik IW (1965) Table of integrals, series, and products. Academic Press, New York San Francisco London

    Google Scholar 

  • Guo A, Reichardt W (1987) An estimation of the time constant of movement detectors. Naturwissenschaften (in press)

  • Hardie RC (1985) Functional organization of the fly retina. In: Autrum H, Ottoson D, Perl ER, Schmidt RF, Shimazu H, Willis WD (eds) Progress in sensory physiology 5. Springer, Berlin Heidelberg New York, pp 1–79

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 74:49–70

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: structure and signals. Biol Cybern 45:143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: receptive field organization and response characteristics. Biol Cybern 46:67–79

    Article  Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowflyCalliphora erythrocephala. Proc R Soc London B 219:211–216

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora. J Comp Physiol 149:179–193

    Article  Google Scholar 

  • Holub RA, Morton-Gibson M (1981) Response of visual cortical neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. J Neurophysiol 46:1244–1259

    Google Scholar 

  • Kelly DH (1979) Motion and vision. II. Stabilized spatiotemporal threshold surface. J Opt Soc Am 69:1340–1349

    PubMed  Google Scholar 

  • Koenderink JJ, van Doorn AJ, van de Grind WA (1985) Spatial and temporal parameters of motion detection in the peripheral visual field. J Opt Soc Am A 2:252–259

    PubMed  Google Scholar 

  • Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44:656–684

    Article  Google Scholar 

  • Lappin JS, Bell HH (1976) The detection of coherence in moving random-dot patterns. Vision Res 16:161–168

    Article  PubMed  Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory physiology VII/6B. Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc London 225:251–275

    Google Scholar 

  • Mastebroek HAK, Zaagman WH, Lenting BPM (1980) Movement detection: Performance of a wide-field element in the visual system of the blowfly. Vision Res 20:467–474

    Article  PubMed  Google Scholar 

  • McCann GD, MacGinitie GF (1965) Optomotor response studies of insect vision. Proc R Soc London 163:369–401

    Google Scholar 

  • Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzer. Vision Res 14:1229–1236

    Article  PubMed  Google Scholar 

  • Pantle A, Lehmkuhle S, Candill M (1978) On the capacity of directionally selective mechanisms to encode different dimensions of moving stimuli. Perception 7:261–267

    PubMed  Google Scholar 

  • Poggio T, Reichardt W (1973) Considerations on models of movement detection. Kybernetik 13:223–227

    Article  PubMed  Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys 9:377–438

    PubMed  Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnchmung eines Insektes). Z Naturforsch 12b:448–457

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communication. Wiley, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1985) Computation of sensory information by the visual system of the fly (from behaviour to neuronal circultry). In: Haken H (ed) Complex systems-operational approaches in neurobiology, physics, and computers. Springer, Berlin Heidelberg New York Tokyo, pp 38–57

    Google Scholar 

  • reichardt W (1986) Processing of optical information by the visual system of the fly. Vision Res 26:113–126

    Article  PubMed  Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the flyMusca domestica). Biol Cybern 53:285–306

    Article  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375

    PubMed  Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten an dem RüsselkäferChlorophanus viridis). Z Naturforsch 14b:674–689

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern (Suppl) 46:1–30

    Article  Google Scholar 

  • de Ruyter van Steveninck RR (1986) Real-time performance of a movement-sensitive neuron in the blowfly visual system. Doctoral Dissertation, Rijksuniversiteit de Groningen

  • de Ruyter van Steveninck RR, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowflyCalliphora erythrocephala. Biol Cybern 54:223–236

    Article  Google Scholar 

  • van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473

    PubMed  Google Scholar 

  • van Santen JPH, Sperling G (1985) Elaborated Reichardt detectors. J Opt Am A 2:300–321

    Google Scholar 

  • Schouten JF (1967) Subjective stroboscopy and a model of visual movement detectors. In: Wathen-Dum W (ed) Models for the perception of speech and visual form. MIT Press, Cambridge MA, pp 44–55

    Google Scholar 

  • Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7:13–41

    Article  PubMed  Google Scholar 

  • Thorson J (1964) Dynamics of motion perception in the desert locust. Science 149:69–71

    Google Scholar 

  • Tolhurst DJ (1973) Separate channels for the analysis of the shape and the movement of a moving visual stimulus. J Physiol 231:385–402

    PubMed  Google Scholar 

  • Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am RüsselkäferChlorophanus viridis). Z Naturforsch 14b:724–735

    Google Scholar 

  • Wehrhahn C (1985) Visual guidance during flight. In: Kerkut G, Gilbert L (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp 673–683

    Google Scholar 

  • Wilson HR (1985) A model for direction selectivity in threshold motion perception. biol Cybern 51:213–222

    Article  PubMed  Google Scholar 

  • Wright MJ, Johnston A (1985) Invariant tuning of motion aftereffect. Vision Res 25:1947–1955

    Article  PubMed  Google Scholar 

  • Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the monkey. J Physiol 236:549–573

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelhaaf, M., Reichardt, W. Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol. Cybern. 56, 69–87 (1987). https://doi.org/10.1007/BF00317982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317982

Keywords

Navigation