Skip to main content
Log in

Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The cytological influence of light and dark adaptation (LA and DA) on the retinular cells of the spider crab Libinia emarginata has been studied by light and electron microscopy in four adaptive states: 17 hours darkness, 5 hours darkness, 5 hours diffuse light and 17 hours diffuse light. The rhabdom's fine structure is typical of decapods but its dual overall form and position mingle certain features of both apposition and superposition compound eye types. Distal and proximal retinal pigments both showed adaptive migration, but the distal pigment cells moved over a restricted range, and DA separated the retinular cell pigment granules into two groups, perinuclear and basilar.

In the rhabdom no changes in its position, dimensions or microvillus fine structure were observed with LA or DA. But at the base of the rhabdom microvilli the rate of pinocytosis was strongly affected by the eye's adaptive state, being lowest after 17 hours DA and greatest after 17 hours LA; the wall of the 0.1 μ microvesicles so formed, looked like the membrane of the rhabdom microvillus and they were the same size as the vesicles in multivesicular bodies and in vesicular lamellar bodies.

Three categories of complex cytoplasmic particles about 1 μ in diameter (multivesicular bodies, vesicular lamellar bodies and purely lamellar bodies) were all increased in number by decreased DA and by increased LA; similar quantitative effects occurred in the endoplasmic reticulum and in the ribosomes.

The pinocytotic vesicles and the complex cytoplasmic bodies may represent part of an intracellular system to dispose of rhabdom metabolites whose production was initiated or increased by light absorption.

Cytoplasmic and perirhabdomal vacuoles mainly distal in location, were also affected by light, but inversely; their maximal extent occurred after 17 hours DA; less DA or any LA significantly decreased their presence and aggregation.

The data reported are of interest not only because they correlate retinal fine structure with the metabolism of vision but also because they provide a new and specific tool for distinguishing active from inactive neurosensory cells in the optic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baccetti, B., and C. Bedini: Research on the structure and physiology of the eye of a lycosid spider. I. Microscopic and ultramicroscopic structure. Arch. ital. Biol. 102, 97–122 (1964).

    Google Scholar 

  • Bedau, K.: Das Facettenauge der Wasserwanzen. Z. wiss. Zool. 97, 417–456 (1911).

    Google Scholar 

  • Bennitt, R.: The migration of retinal pigment in crustaceans. J. exp. Zool. 40, 381–435 (1924).

    Google Scholar 

  • Bernard, F.: Recherches sur la morphogénèse des yeux composés d'arthropodes. Bull. biol. France et Belg. 23, (Suppl.), 1–162 (1937).

    Google Scholar 

  • Bernhard, C. G. (ed.): Functional organization of the compound eye. Wenner Gren Center Internat. Symp. Series. vol. 7, 591 p. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Brazier, M. A. B. (ed.): Brain function, vol. II., 360 p. Berkeley-Los Angeles: University of California Press 1964.

    Google Scholar 

  • Brown, F. A. jr.: Physiological rhythms. In: The physiology of Crustacea (ed. T. H. Waterman), vol. II, p. 401–430. New York: Academic Press 1961.

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. In: Biological receptor mechanisms (ed. J. W. L. Beament), Symp. Soc. exp. Biol. 16, 86–109 (1962).

  • Dowling, J. E.: Chemistry of visual adaptation in the rat. Nature (Lond.) 188, 114–118 (1960).

    Google Scholar 

  • — and I. R. Gibbons: The effect of vitamin A deficiency on the fine structure of the retina. In: The structure of the eye (ed. G. K. Smelser), p. 85–99. New York: Academic Press 1961.

    Google Scholar 

  • — The fine structure of the pigment epithelium in the albino rat. J. Cell Biol. 14, 459–474 (1962).

    Google Scholar 

  • Duve, C. de, and R. Wattiaux: Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).

    Google Scholar 

  • Eakin, R. M., W. B. Quay, and J. A. Westfall: Cytochemical and cytological studies of the parietal eye of the lizard, Sceloporus occidentalis. Z. Zellforsch. 53, 449–470 (1961).

    Google Scholar 

  • — Cytological and cytochemical studies on the frontal and pineal organs of the treefrog, Hyla regilla. Z. Zellforsch. 59, 663–683 (1963).

    Google Scholar 

  • Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411–430 (1965).

    Google Scholar 

  • — and T. H. Waterman: Fine structure patterns in crustacean rhabdoms. In: Functional organization of the compound eye (ed. C. G. Bernhard), Wenner Gren Center Internat. Symp. Series, vol. 7, p. 105–124. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insecten, 206 S. Leipzig u. Wien: Franz Deuticke 1891.

    Google Scholar 

  • Fawcett, D. W.: The cell, 448 p. Philadelphia: W. B. Saunders Co. 1966.

    Google Scholar 

  • Fernández-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res., Suppl. 5, 586–644 (1958).

  • Genest, A. A.: An analysis of dark adaptation in two crustacean forms, Callinectes sapidus and Procambarus sp., 64. p. Thesis Yale University, New Haven, Conn. 1961.

  • Goldsmith, T. H.: The course of light and dark adaptation in the compound eye of the honey-bee. Comp. Biochem. Physiol. 10, 227–237 (1963).

    Google Scholar 

  • — The visual system of insects. In: The physiology of Insecta (ed. M. Rockstein), vol. I, p. 397–462. New York: Academic Press 1964.

    Google Scholar 

  • Höglund, G.: Pigment migration and retinular sensitivity. In: Functional organization of the compound eye (ed. C. G. Bernhard), Wenner Gren Center Internat. Symp. Series., vol. 7, p. 77–88. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Horridge, G. A., and P. B. T. Barnard: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).

    Google Scholar 

  • Hydén, H.: The neuron. In: The cell (ed. J. Brachet and A. E. Mirsky), vol. IV, p. 215–323 London: Academic Press 1960.

    Google Scholar 

  • — RNA — A functional characteristic of the neuron and its glia. In: Brain function (ed. M. A. B. Brazier), vol. II, p. 29–68. Berkeley-Los Angeles: University of California Press 1964.

    Google Scholar 

  • Kleinholz, L. H.: Pigmentary effectors. In: The physiology of Crustacea (ed. T. H. Waterman), vol. II, p. 133–169. New York: Academic Press 1961.

    Google Scholar 

  • — Hormonal regulation of the retinal pigments. In: Functional organization of the compound eye (ed. C. G. Bernhard), Wenner Gren Center Internat. Symp. Series, vol. 7, p. 89–101. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Kogan, A. B.: Electrical activity and RNA of brain cells. In: Brain function (ed. M. A. B. Brazier), vol. II, p. 345–349. Berkeley-Los Angeles: University of California Press 1964.

    Google Scholar 

  • Kreutzberg, G. W., and H. Hager: Electron microscopical demonstration of acid phosphatase activity in the central nervous system. Histochemie 6, 254–259 (1966).

    Google Scholar 

  • Langer, H.: Spektrometrische Untersuchung der Absorptionseigenschaften einzelner Rhabdomere in Facettenauge. Zool Anz., Suppl. 29, 329–338 (1966).

    Google Scholar 

  • — and B. Thorell: Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41, 673–677 (1966).

    Google Scholar 

  • Mayrat, A.: Premier résultats d'une étude au microscope électronique des yeux des Crustacés. C. R. Acad. Sci. 255, 766–768 (1962).

    Google Scholar 

  • Miller, F., and G. E. Palade: Lytic acitvities in renal protein absorption droplets. An electron microscopical cytochemical study. J. Cell Biol. 23, 519–552 (1964).

    Google Scholar 

  • Morrell, F.: Lasting changes in synaptic organization produced by continuous neuronal bombardment. In: Brain mechanisms and learning (ed. J. F. Dalafresnaye), p. 375–392. Oxford: Blackwell Sci. Publ. 1961.

    Google Scholar 

  • — Modification of RNA as a result of neural activity. In: Brain function (ed. M. A. B. Brazier), vol. II, p. 183–202. Berkeley-Los Angeles: University of California Press 1964.

    Google Scholar 

  • Novikoff, A. B., E. Essner, and N. Quintana: Golgi apparatus and lysosomes. Fed. Proc. 23, 1010–1022 (1964).

    Google Scholar 

  • Parker, G. H.: The retina and optic ganglia in decapods, especially in Astacus. Mitth. Zool. Station Neapel 12, 1–73 (1895).

    Google Scholar 

  • Pedler, C., and H. Goodland: The compound eye and first ganglion of the fly. A light and electron microscopic study. J. roy. micr. Soc. 84, 161–179 (1965).

    Google Scholar 

  • Pipa, R. L., R. S. Nishioka, and H. A. Bern: Thysanuran median frontal organ: its structural resemblance to photoreceptors. Science 145, 829–831 (1964).

    Google Scholar 

  • Porter, K. R., and E. Yamada: Studies on the endoplasmic reticulum. V. Its form and differentiation in pigment epithelial cells of the frog retina. J. biophys. biochem. Cytol. 8, 181–205 (1960).

    Google Scholar 

  • Röhlich, P., and L. J. Török: The effect of light and darkness on the fine structure of the retinal clubs of Dendrocoelum lacteum. Quart. J. micr. Sci. 103, 543–548 (1962).

    Google Scholar 

  • Rutherford, D. J., and G. A. Horridge: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965).

    Google Scholar 

  • Schmitt, F. O. (ed.): Macromolecular specificity and biological memory, 119 p. Cambridge, Mass.: Massachusetts Institute of Technology Press 1962.

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the arthropod ganglia. Z. Zellforsch. 66, 649–682 (1962).

    Google Scholar 

  • - Some aspects of the structural organization of the arthropod eye. In: Sensory receptors (ed. L. Frisch), Cold Spr. Harb. Symp. quant. Biol. 30, 371–382 (1965).

  • Uchizono, K.: The structure of possible photoreceptive elements in the sixth abdominal ganglion of the crayfish. J. Cell Biol. 15, 151–154 (1962).

    Google Scholar 

  • Vowles, D. M.: The receptive fields of cells in the retina of the housefly (Musca domestica). Proc. roy. Soc. B 164, 552–576 (1966).

    Google Scholar 

  • Waddington, C. H., and M. M. Perry: The ultra-structure of the developing eye of Drosophila. Proc. roy. Soc. B 153, 155–178 (1960).

    Google Scholar 

  • Wald, G., P. K. Brown, and I. R. Gibbons: Visual excitation: a chemoanatomical study. In: Biological receptor mechanisms (ed. J. W. L. Beament), Symp. Soc. exp. Biol. 16, 32–57 (1962).

  • Waterman, T. H.: Systems analysis and the visual orientation of animals. Amer. Scientist 54, 15–45 (1966a).

    Google Scholar 

  • — Polarotaxis and primary photoreceptor events in Crustacea. In: Functional organization of the compound eye (ed. C. G. Bernhard), Wenner Gren Center Internat. Symp. Series, vol. 7, p. 493–511. Oxford: Pergamon Press 1966b.

    Google Scholar 

  • — Information channeling in the crustacean retina. In: Proc. Symp. on Information Processing in Sight Sensory Systems (ed. P. W. Nye), p. 48–56. National Institutes of Health and California Institute of Technology. Pasadena: California Institute of Technology 1966c.

    Google Scholar 

  • —, and K. W. Horch: Mechanism of polarized light perception. Science, 154, 467–475 (1966).

    Google Scholar 

  • Yamamoto, T., K. Tasaki, Y. Sugawara, and A. Tonosaki: Fine structure of the octopus retina. J. Cell Biol. 25, 345–359 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was initiated with the aid of U.S. Public Health Service Grant NB-03076 and has been continued with the support of U.S. Air Force Grant AFOSR-1064. The authors wish to thank Dr. Joseph G. Gall and Dr. William R. Adams for generously sharing their electron microscopic facilities; they are also grateful to Mrs. Mabelita Campbell for her collaboration on the light microscopy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eguchi, E., Waterman, T.H. Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Zeitschrift für Zellforschung 79, 209–229 (1967). https://doi.org/10.1007/BF00369286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369286

Keywords

Navigation