Skip to main content
Log in

Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Insulin secretion from pancreatic beta cells is dependent on membrane potential changes that result from the concerted regulation of multiple ion channels. Among the distinct K+ channels known to be expressed in beta cells, large conductance Ca2+-activated K+ channels have been suggested to play an important role in stimulus-secretion coupling. In the course of a strategy to identify transcripts that are enriched in human pancreatic islet cells, we isolated a partial cDNA encoding a human large conductance Ca2+-activated K+ channel mRNA (hSlo). Northern analysis of mRNA showed that among a panel of human tissues hSlo is expressed at its highest levels in pancreatic islets. Screening of human insulinoma and islet cDNA libraries with the partial cDNA resulted in the isolation of 19 hSlo cDNAs. These comprised three splice variants: one shared the common underlying structure of previously reported Slo cDNAs, another variant encoded a novel 60-amino acid insertion in the putative Ca2+-sensing domain of hSlo, while the third group of clones had an alternate exon encoding eight amino acids in the predicted COOH-terminal end. Analysis of somatic-cell hybrids containing different portions of chromosome 10 indicated that hSlo maps to chromosome 10q22.2–q23.1. Furthermore, high resolution localization was obtained by analysis of genome-wide radiation hybrids and the CEPH “B” mega-YAC library, both of which identified for the first time a highly polymorphic genetic marker (D10S195) linked to hSlo. These studies provide tools with which to explore the physiological role of Ca2+-activated K+ channel proteins in pancreatic islets, and also to investigate the contribution of this locus to the inherited susceptibility to non-insulin-dependent diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NIDDM:

Non-insulin-dependent diabetes mellitus

Kv :

voltage-gated delayed rectifier channel

BK:

high conductance K+ channel

PCR:

polymerase chain reaction

RH:

radiation hybrid

LOD:

log of the odds

STS:

sequence tagged site

SSC:

NaCl/sodium citrate reagent commonly used in mol. bio

References

  1. Cook DL, Satin LS, Ashford ML, Hales CN (1988) ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. Diabetes 37: 495–498

    Article  PubMed  CAS  Google Scholar 

  2. Ashcroft FM, Rorsman P (1991) Electrophysiology of the pancreatic b-cell. Prog Biophys Mol Biol 54: 87–143

    Article  Google Scholar 

  3. Misler S, Barnett DW, Gillis KD, Pressel DM (1992) Electrophysiology of stimulus-secretion coupling in human beta-cells. Diabetes 41 1221–1228

    Article  PubMed  CAS  Google Scholar 

  4. Ammala C, Larsson O, Berggren PO et al. (1991) Inositol trisphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose-stimulated pancreatic beta-cells. Nature 353: 849–852

    Article  PubMed  CAS  Google Scholar 

  5. Philipson LH, Rosenberg MP, Kuznetsov A et al. (1994) Delayed rectifier K+ channel overexpression in transgenic islets and beta-cells associated with impaired glucose responsiveness. J Biol Chem. 269: 27787–27790

    PubMed  CAS  Google Scholar 

  6. Henquin JC (1979) Opposite effect of glucose and intracellular Ca2+ on K+ permeability of pancreatic islet cells. Nature 280: 66–68

    Article  PubMed  CAS  Google Scholar 

  7. Henquin JC (1990) Role of voltage- and Ca2(+)-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflugers Archiv-Eur J Physiol 416: 568–572

    Article  CAS  Google Scholar 

  8. Chay TR (1986) On the effect of the intracellular calcium-sensitive K+ channel in the bursting pancreatic beta-cell. Biophys J 50: 765–777

    Article  PubMed  CAS  Google Scholar 

  9. Kukuljan M, Goncalves AA, Atwater I (1991) Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells. J Memb Biol 119: 187–195

    Article  CAS  Google Scholar 

  10. Bordin S, Carneiro EM, Atwater I, Rojas E, Boschero AC (1995) Modulation of Ca2+ and K+ permeabilities by oxotremorine-M (OXO-M) in pancreatic b-cells. Diabetelogia 38[Suppl 1]:A118 (Abstract)

    Google Scholar 

  11. Philipson LH, Hice RE, Schaefer K et al. (1991) Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci USA 88: 53–57

    Article  PubMed  CAS  Google Scholar 

  12. Yano H, Philipson LH, Kugler JL et al. (1994) Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA. Mol Pharmacol 45: 854–860

    PubMed  CAS  Google Scholar 

  13. Ferrer J, Nichols CG, Makhina EN et al. (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein activated channels. J Biol Chem 270: 26086–26074

    Article  PubMed  CAS  Google Scholar 

  14. Porte DJ (1991) Banting lecture. Beta-cells in type II diabetes mellitus. Diabetes 40: 166–180

    Article  PubMed  Google Scholar 

  15. Tseng-Crank J, Foster C, Krause J et al. (1994) Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13: 1315–1330

    Article  PubMed  CAS  Google Scholar 

  16. Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261: 221–224

    Article  PubMed  CAS  Google Scholar 

  17. Pallanck L, Ganetzky B (1994) Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Gen 3: 1239–1243

    Article  PubMed  CAS  Google Scholar 

  18. McCobb D, Fowler N, Featherstone T, Lingle CJ, Saito M, Krause JE, Salkoff L (1995) A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol 38:H767-H77

    Google Scholar 

  19. Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253: 551–555

    Article  PubMed  CAS  Google Scholar 

  20. Garcia CM, Knaus HG, McManus OB et al. (1994) Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem. 269: 676–682

    PubMed  Google Scholar 

  21. Ferrer J, Schoor K, Wasson J, Kipnis D (1994) Identification of 5 human islet-specific genes by differential display of mRNA. Diabetes 43[Suppl 1]:6A (Abstract)

    Google Scholar 

  22. Atwater I, Mears D, Rojas E (1996) Electrophysiology of the pancreatic b-cell. In: LeRoith D, Olefsky JM, Taylor S (eds) Diabetes mellitus: a fundamental and clinical text. Lippincott

  23. Maniatis T, Fritsch EF, Sambrook J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  24. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971

    Article  PubMed  CAS  Google Scholar 

  25. Permutt MA, Koranyi L, Keller K et al. (1989) Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA. Proc Natl Acad Sci USA 86: 8688–8692

    Article  PubMed  CAS  Google Scholar 

  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  27. Chiu KC, Province MA, Permutt MA (1992 Glucokinase gene is genetic marker for NIDDM in American blacks. Diabetes 41: 843–849

    Article  PubMed  CAS  Google Scholar 

  28. Cox DR, Burmeister M, Price ER, Kim S, Myers RM (1990) Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250: 245–250

    Article  PubMed  CAS  Google Scholar 

  29. Astrin K, Warner C, Yoo H et al. (1991) Regional assignment of the human uroporphyrinogen III synthase (UROS) gene to chromosome 10q25.2–26.3. Hum Genet 87: 18–22

    Article  PubMed  CAS  Google Scholar 

  30. Brooks-Wilson A, Smailus D, Weier H, Goodfellow P (1992) Human repeat element-mediated PCR: cloning and mapping of chromosome 10 DNA markers. Genomics 13: 409–414

    Article  PubMed  CAS  Google Scholar 

  31. Cohen D, Chumakov I, Weissenbach J (1993) A first-generation physical map of the human genome. Nature 366: 698–701

    Article  PubMed  CAS  Google Scholar 

  32. Murell V (1993 The puzzle of triplet repeats. Science 260 1422–1423

    Article  Google Scholar 

  33. Lagrutta A, Shen KZ, North RA, Adelman JP (1994) Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem 269: 20347–20351

    PubMed  CAS  Google Scholar 

  34. Wei A, Solaro C, Lingle C, Salkoff L (1994) Calcium sensitivity of BK-type K Ca channels determined by a separable domain. Neuron 13: 671–681

    Article  PubMed  CAS  Google Scholar 

  35. Atwater I, Rosario L, Rojas E (1983) Properties of the Ca-activated K+ channel in pancreatic beta-cells. Cell Calcium 4: 451–461

    Article  PubMed  CAS  Google Scholar 

  36. Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic b-cells under voltage clamp conditions. J Physiol (London) 374: 531–550

    CAS  Google Scholar 

  37. Eddlestone GT, Ribalet B, Ciani S (1989) Comparative study of K channel behavior in beta cell lines with different secretory responses to glucose. J Memb Biol 109: 123–134

    Article  CAS  Google Scholar 

  38. Kume H, Kotlikoff MI (1991) Muscarinic inhibition of single K Ca channels in smooth muscle cells by a pertussis-sensitive G protein. Am J Physiol 261: C 1204-C 1209

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, J., Wasson, J., Salkoff, L. et al. Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39, 891–898 (1996). https://doi.org/10.1007/BF00403907

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403907

Keywords

Navigation