Skip to main content
Log in

Dopamine receptors in canine caudate nucleus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.

Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 μM for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.

Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlsson, A., Falck, B. & Hillarp, N.-A., 1962. Acta Physiol. Scand. Supp. 196: 1–27.

    Google Scholar 

  2. Lindvall, O., Bjorkland, A., 1978. Handbook of Psychopharmacology 9 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 139–231.

  3. Costall, B. & Naylor, R. J., 1976. Eur. J. Pharmacol. 35: 161–168.

    Google Scholar 

  4. Di chiara, G., Porceddu, M. L., Vargin, L., Argiolas, A. & Gessa, G. L., 1976. Nature 264: 564–567.

    Google Scholar 

  5. Iversen, S. D., 1977. Handbook of Psychopharmacology 8 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 333–384.

  6. Meltzer, H. Y., So, R., Miller, R. J. & Fang, V. S., 1979. Life Sci. 25: 573–584.

    Google Scholar 

  7. Bernheimer, H., Birkmayer, W., Horynkiewicz, O., Jellinger, K. & Seitelberger, F., 1973. J. Neurol. Sci. 20: 415–455.

    Google Scholar 

  8. Horynkiewicz, O., 1973. Br. Med. Bull. 29: 172–178.

    Google Scholar 

  9. Rundrup, A. & Munkvad, I., 1967. Psychopharmacologia 11: 300–310.

    Google Scholar 

  10. Horynkiewicz, O., 1977. Ann. Rev. Pharmacol. Toxicol. 17: 545–559.

    Google Scholar 

  11. Seeman, P., Chau-wong, M., Tedesco, J. & Wong, K., 1975. Proc. Nat. Acad. Sci. U.S.A. 72: 4376–4380.

    Google Scholar 

  12. Creese, I., Burt, D. R. & Snyder, S. H., 1976. Science 192: 481–483.

    Google Scholar 

  13. Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poulter, M. & Riley, G. J., 1978. Lancet 2: 223–226.

    Google Scholar 

  14. Crow, T. J., Johnstone, E. C., Longden, A. & Owen, F., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) pp. 301–309.

  15. Cools, A. R. & van Rossum, J. M., 1976. Psychopharmacologia 45: 243–254.

    Google Scholar 

  16. van Rossum, J. M., 1978. Fed. Proc. 37: 2415–2421.

    Google Scholar 

  17. Spano, P. F., Govoni, S. & Trabucchi, M., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) pp. 155–165.

  18. Kebabian, J. W. & Calne, D. B., 1979. Nature 277: 93–96.

    Google Scholar 

  19. Cools, A. R. & van Rossum, J. M., 1980. Life Sci. 27: 1237–1253.

    Google Scholar 

  20. Costall, B. & Naylor, R. J., 1981. Life Sci. 28: 215–229.

    Google Scholar 

  21. Bloom, F. E., Costa, E. & Salmoiraghi, G. C., 1965. J. Pharmacol. exp. Ther. 150: 244–252.

    Google Scholar 

  22. Felz, P., 1970. J. Physiol. (Paris) 62: 151.

    Google Scholar 

  23. McLennam, H. & York, D. H., 1967. J. Physiol. (Lond.) 189: 393–402.

    Google Scholar 

  24. York, D. H., 1975. Handbook of Psychopharmacol. 6 (Iversen, L. L., Iversen, S. D. & Snyder, S. H., eds.) Plenum Press, New York, pp. 23–61.

  25. Libet, B., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 541–546.

  26. Struyker-Boudier, H. J., Gielen, W., Cools, A. R. & van Rossum, J. M., 1974. Arch. Intern. Pharmacodyn. 209: 324–331.

    Google Scholar 

  27. Groves, P. M., Wilson, C. J., Young, S. J. & Rebec, G. V., 1975. Science 190: 522–529.

    Google Scholar 

  28. Costa, E., Cheney, D. L., Mao, C. C. & Moroni, F., 1978. Fed. Proc. 37: 2408–2414.

    Google Scholar 

  29. Creese, I. & Iversen, S. D., 1974. Psychopharmacologia 39: 345–357.

    Google Scholar 

  30. Farnebo, L.-O. & Hamberger, B., 1971. Acta Physiol. Scand. Suppl. 371: 35–44.

    Google Scholar 

  31. Walter, J. R. & Roth, R. H., 1976. Neunyn-Schmiedberg's Arch. Pharmacol. 296: 5–14.

    Google Scholar 

  32. Christiansen, J. & Squires, R. F., 1974. J. Pharma. Pharmac. 26: 367–369.

    Google Scholar 

  33. Carlsson, A., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 439–441.

  34. Kebabian, J. W. & Greengard, P., 1971. Science 174: 1346–1349.

    Google Scholar 

  35. Kebabian, J. W., Petzold, G. L. & Greengard, P., 1972. Proc. Nat. Acad. Sci. U.S.A. 69: 2145–2149.

    Google Scholar 

  36. Garau, L., Govani, Stefanini, E., Trabucchi, M. & Spano, P. E., 1978. Life Sci. 23: 1745–1750.

    Google Scholar 

  37. Kebabian, J. W., 1978. Adv. Biochem. Psychopharmacol. 19 (Roberts, P. J., Woodruff, G. N. & Iversen, L. L., eds.) Raven Press, New York, pp. 131–154.

  38. Carlsson, A., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 439–441.

  39. Aghajanian, G. K. & Bunney, B. S., 1977. Adv. Biochem. Psychopharmacol. 16 (Costa, E. & Greengard, P., eds.) Raven Press, New York, pp. 433–438.

  40. Burt, D. R., Enna, S., Creese, I. & Snyder, S. H., 1975. Proc. Nat. Acad. Sci. U.S.A. 72: 4655–4659.

    Google Scholar 

  41. Creese, I., Burt, D. R. & Snyder, S. H., 1975. Life Sci. 17: 993–1002.

    Google Scholar 

  42. Sano, K. & Maeno, H., 1976. Biochem. Biophys. Res. Commun. 73: 584–590.

    Google Scholar 

  43. Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J. & Wong, K., 1976. Proc. Nat. Acad. Sci. U.S.A. 73: 4354–4358.

    Google Scholar 

  44. Roberts, P. J., Woodruff, G. N. & Poat, J. A., 1977. Mol. Pharmacol. 13: 541–547.

    Google Scholar 

  45. Creese, I., Schneider, R. & Snyder, S. H., 1977. Eur. J. Pharmacol. 46: 377–381.

    Google Scholar 

  46. Nishikori, K., Noshiro, O., Sane, K. & Maeno, H., 1980. J. Biol. Chem. 255: 10909–10915.

    Google Scholar 

  47. Burt, D. R., Creese, I. & Snyder, S. H., 1976. Mol. Pharmacol. 12: 800–812.

    Google Scholar 

  48. Sano, K., Noshiro, O., Katsuda, K., Nishikori, K. & Maeno, H., 1979. Biochem. Pharmacol. 28: 3617–3627.

    Google Scholar 

  49. Creese, I., Prosser, T. & Snyder, S. H., 1978. Life Sci. 23: 495–500.

    Google Scholar 

  50. Creese, I., Usdin, T. & Snyder, S. H., 1979. Nature 278: 577–578.

    Google Scholar 

  51. Zahniser, R. N. & Molinoff, P., 1978. Nature 275: 453–455.

    Google Scholar 

  52. Maguire, M. E., van Ansdale, P. M. & Gilman, A., 1976. Mol. Pharmacol. 12: 335–339.

    Google Scholar 

  53. Willams, L. T. & Lefkowitz, R. J., 1977. J. Biol. Chem. 252: 7207–7213.

    Google Scholar 

  54. Nishikori, K. & Maeno, H., 1979. Arch. Biochem. Biophys. 195: 505–517.

    Google Scholar 

  55. Rodbell, M., Kraus, H. M. J., Pohl, S. L. & Birnbaumer, L., 1971. J. Biol. Chem. 246: 1872–1876.

    Google Scholar 

  56. Nyman, M. & Whittaker, V. P., 1963. Biochem. J. 87: 248–255.

    Google Scholar 

  57. Dowdall, M. J., Boyne, A. F. & Whittaker, V. P., 1974. Biochem. J. 140: 1–12.

    Google Scholar 

  58. Zimmermann, H. & Whittaker, V. P., 1974. J. Neurochem. 22: 435–450.

    Google Scholar 

  59. Silinsky, E. M., 1975. J. Physiol. (London). 247: 145–162.

    Google Scholar 

  60. White, T. D., 1978. J. Neurochem. 30: 329–336.

    Google Scholar 

  61. Pull, I. & McIlwain, H., 1972. Biochem. J. 130: 975–981.

    Google Scholar 

  62. Kuroda, Y., 1978. J. Physiol. (Paris) 74: 463–470.

    Google Scholar 

  63. van Calker, D., Muller, M. & Hamprecht, B., 1979. J. Neurochem. 33: 999–1005.

    Google Scholar 

  64. Usuda, S., Nishikori, K., Noshiro, O., Iwanami, S. & Maeno, H., 1981. Submitted to Biochem. Pharmacol.

  65. Usuda, S., Sano, K. & Maeno, H., 1979. Arch. intern. Pharmacodyn. 241: 68–78.

    Google Scholar 

  66. Usuda, S., Nishikori, K., Noshiro, O. & Maeno, H., 1981. Psychopharmacology 73: 103–109.

    Google Scholar 

  67. Noshiro, O., Nishikori, K., Usuda, S. & Maeno, H., 1980. Folia Pharmacologia Japonica 76: 183p.

  68. Yoshioka, M., Kirino, Y., Tamura, Z. & Kwan, T., 1977. Chem. Pharm. Bull. 25: 75–78.

    Google Scholar 

  69. Takayanagi, I., Yoshioka, M., Takagi, K. & Tamura, Z., 1976. Europ. J. Pharmacol. 35: 121–125.

    Google Scholar 

  70. Queener, S. F., Fleming, J. W. & Bell, N. H., 1975. J. Biol. Chem. 250: 7586–7592.

    Google Scholar 

  71. Levy, G. S., 1971. Biochem. Biophys. Res. commun. 43: 108–113.

    Google Scholar 

  72. Levy, G. S., 1971. J. Biol. Chem. 246: 7405–7410.

    Google Scholar 

  73. Neer, E. J., 1973. J. Biol. Chem. 248: 3742–3744.

    Google Scholar 

  74. Drummond, G. I. & Dunham, J., 1978. Arch. Biochem. Biophys. 189: 63–75.

    Google Scholar 

  75. Sano, K., Nishikori, K., Noshiro, O. & Maeno, H., 1979. Arch. Biochem. Biophys. 197: 285–293.

    Google Scholar 

  76. Hoffmann, F. M., 1979. J. Biol. Chem. 254: 255–258.

    Google Scholar 

  77. Ross, E., Howlett, A., Ferguson, K. & Gilman, A., 1978. J. Biol. Chem. 253: 6401–6412.

    Google Scholar 

  78. Bhat, M. K., Iyengaz, R., Abramouritz, J., Bordelon-Riser, M. E. & Birnbaumer, L., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 3836–3840.

    Google Scholar 

  79. Spiegel, A., Downs, R. & Aurbach, G., J. Cyclic Nucletide Res. 5, 3–17.

  80. Nilsen, T. B., Downs, R. W. & Spiegel, A. M., 1980. Biochem. J. 190: 439–443.

    Google Scholar 

  81. Downs, R. W., Spiegel, A. M., Singer, M., Reen, S. & Aurbach, G. P., 1980. J. Biol. Chem. 255: 949–954.

    Google Scholar 

  82. Drummond, G. I., Sano, M. & Nambi, P., 1980. Arch. Biochem. Biophys. 201: 286–295.

    Google Scholar 

  83. Eckstein, F., 1979. J. Biol. Chem. 254: 9829–9834.

    Google Scholar 

  84. Strittmatter, S. & Neer, E. J., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 6344–6348.

    Google Scholar 

  85. Hebdon, M., Levine III, H., Sahyoun, N., Schmitges, C. J. & Cuatrecasas P., 1978. Proc. Nat. Acad. Sci. U.S.A. 75: 3693–3697.

    Google Scholar 

  86. Norethup, J. K., Sternweis, P. C., Smigel, M. D., Schlefer, L. S., Ross, E. M. & Gilman, A. G., 1980. Proc. Nat. Acad. Sci. U.S.A. 77: 6516–6520.

    Google Scholar 

  87. Ross, E. M. & Gilamn, A. G., 1977. J. Biol. Chem. 252: 6966–6969.

    Google Scholar 

  88. Bradham, L. S., 1977. J. Cyclic Nucleotide Res. 3: 119–128.

    Google Scholar 

  89. Rodbell, M., 1980. Nataure 284: 17–22.

    Google Scholar 

  90. Kuo, J. F. & Greengard, P., 1969. Proc. Nat. Acad. Sci. U.S.A. 64: 1349–1355.

    Google Scholar 

  91. Miyamoto, E., Kuo, J. F. & Greengard, P., 1969. J. Biol. Chem. 244: 6395–6402.

    Google Scholar 

  92. De Robertis, E., De Lores Arnaiz, G. R., Alberici, M., Butcher, R. W. & Sutherland, E. W., 1969. J. Biol. Chem. 242: 3487–3493.

    Google Scholar 

  93. Cheung, W. Y. & Salgamicoff, L., 1967. Nature 214: 90–91.

    Google Scholar 

  94. Maeno, H., Johnson, E. M. & Greengard, P., 1971. J. Biol. Chem. 246: 134–142.

    Google Scholar 

  95. Johnson, E. M., Maeno, H. & Greengard, P., 1971. J. Biol. Chem. 246: 7731–7739.

    Google Scholar 

  96. Ueda, T., Maeno, H. & Greengard, P., 1973. J. Biol. Chem. 248: 8295–8305.

    Google Scholar 

  97. Ueda, T. & Greengard, P., 1977. J. Biol. Chem. 252: 5155–5163.

    Google Scholar 

  98. Maeno, H. & Greengard, P., 1972. J. Biol. Chem. 247: 3269–3277.

    Google Scholar 

  99. Maeno, H., Reyes, P. L., Ueda, T., Rudolph, S. A. & Greengard, P., 1974. Arch. Biochem. Biophys. 164: 551–559.

    Google Scholar 

  100. Casnellie, J. E. & Greengard, P., 1974. Proc. Nat. Acad. Sci. U.S.A. 71: 1891–1895.

    Google Scholar 

  101. Carlsson, A. & Lindquist, M., 1963. Acta. Pharmacol. Toxicol. 20: 140–144.

    Google Scholar 

  102. Anden, N. E., Roos, B.-E. & Werdinius, B., 1964. Life Sci. 3: 149–158.

    Google Scholar 

  103. Westerink Ben, H. C., Lejeune, B., Lorf, J. & Van Praag, H. M., 1977. Europ. J. Pharmacol. 42: 179–190.

    Google Scholar 

  104. Roos, B. E., 1969. J. Pharm. Pharmacol. 21: 263–264.

    Google Scholar 

  105. Costall, B., Funderburk, W. H., Leonard, C. A. & Naylor, R. J., 1978. J. Pharm. Pharmacol. 30: 771–778.

    Google Scholar 

  106. Fuxe, K., Fredholm, B. B., Agnoti, L. F., Ogren, S.-O., Everitt, B. J., Johnsson, G. & Gustafsson, J.-A., 1978. Pharmacology 16, (suppl. 1), 99.

    Google Scholar 

  107. Lee, H. K., Chung, P. M. & Wang, S. C., 1978. Europ. J. Pharmacol. 53: 29–38.

    Google Scholar 

  108. Puech, A. J., Simon, P. & Boissier, J. R., 1978. Europ. J. Pharmacol. 50: 291–300.

    Google Scholar 

  109. Honda, F., Satoh, Y. & Simonura, K., 1977. Japan J. Pharmacol. 27: 397–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeno, H. Dopamine receptors in canine caudate nucleus. Mol Cell Biochem 43, 65–80 (1982). https://doi.org/10.1007/BF00423094

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423094

Keywords

Navigation