Skip to main content
Log in

Voltage-dependent currents in neurones of the nuclei of the solitary tract of rat brainstem slices

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv European Journal of Physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Neurones within the ventral and ventrolateral nuclei of the solitary tract were analyzed under single-electrode current- and voltage-clamp conditions in rat brainstem slices. We present direct and indirect evidence for the existence of five different sorts of membrane currents:

  1. 1.

    a tetrodotoxin-sensitive sodium current,

  2. 2.

    a tetrodotoxin-resistant calcium current,

  3. 3.

    a calcium-dependent potassium current,

  4. 4.

    a non-inactivating potassium current which is inhibited by muscarine,

  5. 5.

    an inactivating potassium current, which is inhibited by 4-aminopyridine.

These membrane properties do not produce spontaneous bursting in these neurones. Assuming that neurones with such properties belong to the respiratory network, we discuss how conductances of this type may be involved in mechanisms regulating central respiratory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acker H, Richter D (1985) Changes in potassium activity, calcium activity, and oxygen tension in the extracellular space of inspiratory neurones within the NTS of cats. In: Bianchi AL, Denavit-Saubié M (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancester, pp 183–185

    Google Scholar 

  • Adams PR (1982) Voltage-dependent conductances of vertebrate neurones. TINS 5:1–4

    Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982) M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol (Lond) 330:537–572

    CAS  Google Scholar 

  • Akaike N, Lee KS, Brown AM (1978) The calcium current of Helix neurons. J Gen Physiol 71:509–531

    Article  PubMed  CAS  Google Scholar 

  • Amoroso EC, Bainbridge JG, Bell FR, Lawn AM, Rosenberg H (1951) Central respiratory spike potentials. Nature 169:603–604

    Article  Google Scholar 

  • Ballantyne D, Richter DW (1984) Post-synaptic inhibition of bulbar inspiratory neurones in the cat. J Physiol (Lond) 348:67–87

    CAS  Google Scholar 

  • Ballantyne B, Richter DW (1985) The non-uniform character of expiratory synaptic activity in expiratory bulbospinal neurones of the cat. J Physiol (Lond) (in press)

  • Barrett EF, Barrett JN, Crill WE (1980) Voltage-sensitive outward currents in cat motoneurones. J Physiol (Lond) 304:251–276

    CAS  Google Scholar 

  • Berger AJ, Averill DB, Cameron WE (1984) Morphology of inspiratory neurons located in the ventrolateral nucleus of the tractus solitarius of the cat. J Comp Neurol 224:60–70

    Article  PubMed  CAS  Google Scholar 

  • Brennecke R, Lindemann B (1971) A chopped-current clamp for current injection and recording of membrane polarization with single electrodes of changing resistance. TITJ Life Sci 1:53–58

    Google Scholar 

  • Brennecke R, Lindemann B (1974) Theory of a membrane-voltageclamp with discontinuous feedback through a pulsed current clamp. Rev Sci Instr 45:184–188

    Article  Google Scholar 

  • Brown DA (1983) Slow cholinergic excitation—a mechanism for increasing neuronal excitability. TINS 6:302–307

    Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated, fully inactivated Ca channel in vertebrate sensory neurones. Nature 310:501–503

    Article  PubMed  CAS  Google Scholar 

  • Champagnat J, Denavit-Saubié M, Velluti JC (1980) Excitability of bullar respiratory neurones: a study using microiontophoretic applications of depolarizing agents. Brain Res 191:359–377

    Article  PubMed  CAS  Google Scholar 

  • Champagnat J, Denavit-Saubié M, Moyanova S, Rondouin G (1982) Involvement of amino acids in periodic inhibitions of bulbar respiratory neurones. Brain Res 237:351–365

    Article  PubMed  CAS  Google Scholar 

  • Champagnat J, Denavit-Saubié M, Siggins GR (1983) Rhythmic neuronal activities in the nucleus of the tractus solitarius isolated in vitro. Brain Res 280:155–159

    Article  PubMed  CAS  Google Scholar 

  • Champagnat J, Grant K, Shen KF, Denavit-Saubié M (1985a) Neuronal morphology and synaptic transmission in the solitary complex in vitro. In: Bianchi AL, Denavit-Saubié M (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancester, pp 157–164

    Google Scholar 

  • Champagnat J, Shen KF, Siggins GR, Koda L, Denavit-Saubié M (1985b) Effects of neurotransmitters and synaptic processing of neurovegetative afferents in the brainstem of the rat. J Auton Nerv Syst (in press)

  • Champagnat J, Siggins GR, Koda L, Denavit-Saubié M (1985c) Synaptic responses of neurones of the nucleus tractus solitarius in vitro. Brain Res 325:49–56

    Article  PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais D (1983) Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones. J Physiol (Lond) 342:277–308

    CAS  Google Scholar 

  • Cohen MI (1979) Neurogenesis of the respiratory rhythm in the mammal. Physiol Rev 59:1105–1173

    PubMed  CAS  Google Scholar 

  • Connor JA, Stevens CF (1971a) Voltage-clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol (Lond) 213:21–30

    CAS  Google Scholar 

  • Connor JA, Stevens CF (1971b) Prediction of repetitive firing behaviour from voltage-clamp data on an isolated neurone soma. J Physiol (Lond) 213:31–53

    CAS  Google Scholar 

  • Dekin MS, Getting PA (1984) Firing pattern of neurons in the nucleus tractus solitarius: modulation by membrane hyperpolarization. Brain Res 324:180–184

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Lux HD (1975) A non-inactivating inward current recorded during small depolarizing voltage steps in snail pacemaker neurons. Brain Res 83:486–489

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Lux HD (1976) A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J Physiol (Lond) 254:129–151

    CAS  Google Scholar 

  • Eckert R, Tillotson DL, Brehm P (1981) Calcium-mediated control of Ca and K currents. Fed Proc 40:2226–2232

    PubMed  CAS  Google Scholar 

  • Finkel AS, Redman SJ (1984) Theory and operation of a single microelectrode voltage-clamp. J Neurosci Methods 11:101–127

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson B, Wigström H (1981) Evidence for two types of after hyperpolarization in CA1 pyramidal cells in the hippocampus. Brain Res 206:462–468

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerly L (1983) The calcium channel. TINS 6:189–193

    CAS  Google Scholar 

  • Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Hartung K (1983) Ca2+ activated K+ conductance in molluscan neurones. Cell Calcium 4:387–405

    Article  PubMed  CAS  Google Scholar 

  • Heyer CB, Lux HD (1976) Properties of a facilitating calcium current in pace-maker neurones of the snailHelix pomatia. J Physiol (Lond) 262:319–348

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo. J Physiol (Lond) 116:449–472

    CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J Physiol (Lond) 138:253–281

    CAS  Google Scholar 

  • Howard BR, Tabatabai M (1975) Localization of the medullary respiratory neurons in rats by microelectrode recording. J Appl Physiol 39:812–817

    PubMed  CAS  Google Scholar 

  • Johnston D, Brown TH (1983) Interpretation of voltage-clamp measurements in hippocampal neurons. J Neurophysiol 50:464–496

    PubMed  CAS  Google Scholar 

  • Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Article  PubMed  CAS  Google Scholar 

  • Kessler JP, Jean A (1984) Identification of the medullary swallowing regions in the rat. Exp Brain Res 57:148–155

    Google Scholar 

  • Kostyuk PG, Krishtal OA (1977) Effects of calcium and calciumchelating agents on the inward and outward current in the membrane of mollusc neurones. J Physiol (Lond) 315:569–584

    Google Scholar 

  • Long SE, Duffin J (1984) The medullary respiratory neurons: a review. Can J Physiol Pharmacol 62:161–182

    Article  PubMed  CAS  Google Scholar 

  • Lux HD, Hofmeier G (1982) Properties of a calcium- and voltage-activated potassium current inHelix pomatia neurons. Pflügers Arch 394:61–69

    Article  PubMed  CAS  Google Scholar 

  • Lux HD, Neher E, Marty A (1981) Single channel activity associated with the calcium dependent outward current inHelix pomatia. Pflügers Arch 389:293–295

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J Physiol (Lond) 354:319–331

    CAS  Google Scholar 

  • Marty A (1983) Ca2+-dependent K+ channels with large unitary conductance. TINS 6:262–265

    CAS  Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1–18

    Article  PubMed  CAS  Google Scholar 

  • Merill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon Press, Oxford, pp 451–486

    Google Scholar 

  • Mifflin SW, Ballantyne D, Backman SB, Richter DW (1984) Effects of EGTA injection into medullary respiratory neurones. Pflügers Arch 400:R48

    Google Scholar 

  • Mifflin S, Ballantyne D, Backman SB, Richter DW (1985) Evidence for a calcium activated potassium conductance in medullary respiratory neurones. In: Bianchi AL, Denavit-Saubié (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancester, pp 179–181

    Google Scholar 

  • Miles R (1985) Synaptic integration in the nucleus of the solitary tract studied in vitro. In: Bianchi AL, Denavit-Saubié M (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancester, pp 165–168

    Google Scholar 

  • Miller AJ (1982) Deglutition. Physiol Rev 62:129–186

    PubMed  CAS  Google Scholar 

  • Morin-Surun MP, Champagnat J, Denavit-Saubié M, Moyanova S (1984) The effects of acetylcholine on bulbar respiratory related neurones. Naunyn-Schmiedeberg's Arch Pharmacol 325:205–208

    Article  CAS  Google Scholar 

  • Neher E (1971) Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol 58:36–53

    Article  PubMed  CAS  Google Scholar 

  • Richter DW (1982) Generation and maintenance of the respiratory rhythm. J Exp Biol 100:93–107

    PubMed  CAS  Google Scholar 

  • Richter DW, Camerer H, Meesmann M, Röhrig N (1979) Studies on the synaptic interaction between bulbar respiratory neurones of cats. Pflügers Arch 380:245–257

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Ballantyne D, Mifflin S (1985) Interaction between postsynaptic activities and membrane properties in medullary respiratory neurones. In: Bianchi AL, Denavit-Saubié M (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancester, pp 172–178

    Google Scholar 

  • Spyer KM (1984) Central control of the cardiovascular system. In: Baker PF (ed) Recent advances in physiology. Churchill Livingston, London, pp 163–200

    Google Scholar 

  • Stinnakre J (1981) Detection and measurement of intracellular calcium. TINS 4:46–50

    CAS  Google Scholar 

  • Wilson W, Goldner MA (1975) Voltage-clamping with single microelectrode. J Neurobiol 4:411–422

    Article  Google Scholar 

  • Yarom Y, Llinas R (1979) Electrophysiological properties of mammalian olive neuron in in vitro brain stem slice and in vitro whole brain stem. Soc Neurosci Abstr 5:109

    Google Scholar 

  • Yarom Y, Sugimori M, Llinas R (1980) Inactivating fast potassium conductance in vagal motoneurons in guinea pigs: an in vitro study. Soc Neurosci Abstr 6:198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champagnat, J., Jacquin, T. & Richter, D.W. Voltage-dependent currents in neurones of the nuclei of the solitary tract of rat brainstem slices. Pflugers Arch. 406, 372–379 (1986). https://doi.org/10.1007/BF00590939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590939

Key words

Navigation