Skip to main content
Log in

The function of auditory neurons in cricket phonotaxis

I. Influence of hyperpolarization of identified neurons on sound localization

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

In order to examine the role of particular identified auditory neurons of the cricket,Gryllus bimaculatus, in orientation to a sound source, a method has been developed by which intracellular recordings can be made while the animal walks on an air-suspended sphere, which is rotated by the leg movements (Fig. 1). The angular velocities of sphere rotation were found to depend on the direction of incident sound, on its intensity and frequency and on the temporal pattern of the sound stimulus (Figs. 2, 3).

While the cricket was walking, auditory neurons discharged extra action potentials, not correlated with the sound stimulus, and the neuronal response to the sound itself was reduced (Figs. 4, 5).

Suppressing the spike activity by hyperpolarization of a local neuron in the prothoracic ganglion (ON1) reduced in some animals the tendency to turn toward the sound source on the side of the ear that excites the ON1 (Figs. 6–8). Hyperpolarization of a neuron that ascends from the prothoracic ganglion into the brain (AN1), while sound was presented to the ear that excites this neuron, caused all animals to reverse direction; that is, they turned away from the sound source and from the side of the inactivated AN1 (Figs. 9, 10). Hyperpolarization of another ascending neuron (AN2) caused a reduction in turning velocity in half of the animals; but this effect occurred only with high sound pressure levels, and the direction of walking was not reversed (Figs. 11, 12).

From the influences on turning tendency observed in these experiments, it appears that the paired AN1s (and possibly the AN2s at high intensities) may provide inputs to a central comparator that dictates turning tendency in phonotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkins GS, Ligman F, Burghardt F, Stout FJ (1984) Changes in phonotaxis by the female cricketAcheta domesticus after killing identified acoustic interneurons. J Comp Physiol A 154:795–804

    Google Scholar 

  • Casaday GB, Hoy RR (1977) Auditory interneurons in the cricketTeleogryllus oceanicus: physiological and anatomical properties. J Comp Physiol 121:1–13

    Google Scholar 

  • Dahmen HJ (1980) A simple apparatus to investigate the orientation of walking insects. Experientia 36:685–687

    Google Scholar 

  • Godden DH, Graham D (1984) A preparation of the stick insectCarausius morosus for recording intracellularly from identified neurones during walking. Physiol Entomol 9:275–286

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. J Comp Physiol A 158:429–444

    Google Scholar 

  • Huber F, Thorson J (1985) Cricket auditory communication. Sci Am 253:60–68

    Google Scholar 

  • Kien J (1983) The initiation and maintenance of walking in the locust: an alternative to the command concept. Proc R Soc Lond B 219:137–174

    Google Scholar 

  • Kleindienst HU, Koch UT, Wohlers DW (1981) Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol 141:283–296

    Google Scholar 

  • Kramer E (1975) Orientation of the male silkmoth to the sex attractant Bombykol. In: Denton DA, Coghlan IP (eds) Olfaction and taste. Academic Press, New York, pp 329–355

    Google Scholar 

  • Moiseff A, Hoy RR (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol 152:155–167

    Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    Google Scholar 

  • Popov AV, Markovich AM, Andjan AS (1978) Auditory interneurons in the prothoracic ganglion of the cricketGryllus bimaculatus. J Comp Physiol 126:183–192

    Google Scholar 

  • Regen J (1926) Über die Beeinflussung der Stridulation vonThamnotrizon apterus durch künstlich erzeugte Töne und verschiedenartige Geräusche. Sitz Ber Akad Wiss Wien Math Nat Kl 135:329–368

    Google Scholar 

  • Robertson RM, Pearson KG (1982) A preparation for the intracellular analysis of neuronal activity during flight in the locust. J Comp Physiol 146:311–320

    Google Scholar 

  • Ronacher B (1986) Auslösung von Drehung und Gesangsantwort der Männchen vonChorthippus biguttulus durch den Weibchengesang: Eingrenzung der notwendigen Nervenbahnen durch Ausschaltexperimente. In: Elsner N, Rathmayer W (eds) Sensomotorik. Identifizierte Neurone. Thieme, Stuttgart, p 143

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 154:171–185

    Google Scholar 

  • Schildberger K, Milde JJ, Hörner M (1988) The function of auditory neurons in cricket phonotaxis II. Modulation of auditory responses during locomotion. J Comp Physiol A 163:633–640

    Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis inGryllus campestris L. J Comp Physiol 148:431–444

    Google Scholar 

  • Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292

    Google Scholar 

  • Stabel J, Wendler G (1986) Akustische Interneurone und das Vorzeichen der Phonotaxis. In: Elsner N, Rathmayer W (eds) Sensomotorik. Identifizierte Neurone. Thieme, Stuttgart, p 145

    Google Scholar 

  • Stout J, Gerard G, Hasso S (1976) Sexual responsiveness mediated by the corpora allata and its relationship to phonotaxis in the female cricket. J Comp Physiol 108:1–9

    Google Scholar 

  • Stout JF, DeHaan CH, McGhee RW (1983) Attractiveness of the maleAcheta domesticus calling song to females. I. Dependence on each of the calling song features. J Comp Physiol 153:509–521

    Google Scholar 

  • Stout JF, Atkins G, Burghardt F (1985) The characterization and possible importance for phonotaxis of L-shaped ascending acoustic interneurons in the cricket. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 89–100

    Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket. J Comp Physiol 146:361–378

    Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. J Comp Physiol 141:215–232

    Google Scholar 

  • Wiese K, Eilts K (1985) Functional potential of recurrent lateral inhibition in cricket audition. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 33–40

    Google Scholar 

  • Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons. J Comp Physiol 127:11–28

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricketGryllus campestris L. J Comp Physiol 146:161–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schildberger, K., Hörner, M. The function of auditory neurons in cricket phonotaxis. J. Comp. Physiol. 163, 621–631 (1988). https://doi.org/10.1007/BF00603846

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603846

Keywords

Navigation