Skip to main content
Log in

Stridulation of acridid grasshoppers after hemisection of thoracic ganglia: evidence for hemiganglionic oscillators

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

In the grasshopperChorthippus biguttulus the stridulatory movements of males with surgically manipulated ventral nerve cords were investigated.

  1. 1.

    The stridulation pattern of animals with a hemisected mesothoracic ganglion was indistinguishable from that of intact animals.

  2. 2.

    After hemisection of the metathoracic ganglion several animals were still able to stridulate in the species-specific pattern (Figs. 3, 5). Different structural elements of the song, however, were affected to different degrees by this operation. Although the stereotyped up-and-down movements were normal, the rhythm of pauses, which in intact animals are inserted after every third to fourth up- and-down cycle, was disturbed. As a result, the variation of syllable lengths was much higher (Fig. 4).

  3. 3.

    A prominent feature after hemisection of the metathoracic ganglion was an almost complete loss of coordination between left and right hind legs (Figs. 5–7). Only in the coarse structure of the song (e.g. the beginning and termination of song sequences) was a correlation of the leg movements still discernible. This was especially obvious in songs of the rivalry type and in precopulatory kicking movements (Fig. 8).

  4. 4.

    If in addition to hemisection of the metathoracic ganglion one of the neck connectives was transected the animals stridulated only with the hind leg ipsilateral to the intact connective (Fig. 11).

  5. 5.

    Even after hemisection of both the meso- and metathoracic ganglia, animals were able to produce the species-specific stridulation pattern (Fig. 9).

  6. 6.

    In animals with hemisected metathoracic ganglia and both connectives between pro- and mesothoracic ganglia transected, components of the species-specific pattern could be induced by current injection into the mesothoracic ganglion (Fig. 10).

  7. 7.

    These results suggest that the stridulation rhythm-producing neuronal network is composed of hemisegmental subunits. A hemiganglionic structure of rhythm generators might reflect the ancestral organization of locomotion-controlling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNS :

central nervous system

TG1 :

prothoracic ganglion

TG2 :

mesothoracic ganglion

TG3 :

metathoracic ganglion

References

  • Bentley D (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol 116:19–38

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Delcomyn F (1985) Walking and running. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 5. Pergamon, Oxford, pp 439–466

    Google Scholar 

  • Elsner N (1974) Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). I. Song patterns and stridulatory movements. J Comp Physiol 88:67–102

    Google Scholar 

  • Elsner N (1975) Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). II. Neuromuscular activity underlying stridulation. J Comp Physiol 97:291–332

    Google Scholar 

  • Elsner N (1983) A neuroethological approach to the phytogeny of leg stridulation in gomphocerine grasshoppers. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 54–68

    Google Scholar 

  • Elsner N, Huber F (1969) Die Organisation des Werbegesanges der HeuschreckeGomphocerippus rufus L. in Abhängigkeit von zentralen und peripheren Bedingungen. Z Vergl Physiol 65:389–423

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355

    Google Scholar 

  • Friesen WO (1985) Neuronal control of leech swimming movements: interactions between cell 60 and previously described oscillator neurons. J Comp Physiol A 156:231–242

    Google Scholar 

  • Friesen WO, Poon M, Stent GS (1978) Neuronal control of swimming in the medicinal leech: IV. Identification of a network of oscillatory interneurones. J Exp Biol 75:25–43

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Gramoll S (1988) Activity of metathoracic interneurons during stridulation in the acridid grasshopperOmocestus viridulus L. J Comp Physiol A 163:813–825

    Google Scholar 

  • Gramoll S, Elsner N (1987) Morphology of local ‘stridulation’ interneurons in the metathoracic ganglion of the acridid grasshopperOmocestus viridulus L. J Comp Neurol 263:593–606

    Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Google Scholar 

  • Gynther IC, Pearson KG (1986) Intracellular recordings from interneurons and motoneurons during bilateral kicks in the locust: implications for mechanisms controlling the jump. J Exp Biol 122:323–343

    Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. I. Anatomy and physiology of descending cephalothoracic interneurons. J Comp Physiol A 158:413–427

    Google Scholar 

  • Helversen D von (1972) Gesang des Männchens und Lautschema des Weibchens bei der FeldheuschreckeChorthippus biguttulus L. J Comp Physiol 81:381–422

    Google Scholar 

  • Helversen D von, Helversen O von (1975) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken. I. Der Gesang von Artbastarden. J Comp Physiol 104:273–299

    Google Scholar 

  • Helversen O von (1979) Angeborenes Erkennen akustischer Schlüsselreize. Verh Dtsch Zool Ges 1979:42–59

    Google Scholar 

  • Helversen O von, Elsner N (1977) The stridulatory movements of acridid grasshoppers recorded with an opto-electronic device. J Comp Physiol 122:53–64

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Huber F (1963) The role of the central nervous system in Orthoptera during the coordination and control of stridulation. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 440–488

    Google Scholar 

  • Kriegbaum H (1988) Untersuchungen zur ‘Lebensgeschichte’ von Feldheuschrecken (Acrididae, Gomphocerinae): Fortpflanzungsstrategie und akustisches Verhalten im natürlichen Habitat. Thesis, Universität Erlangen-Nürnberg

  • Kutsch W, Otto D (1972) Evidence for song production independent of head ganglia inGryllus campestris. J Comp Physiol 81:115–119

    Google Scholar 

  • Pearson KG, Reye DN, Parsons DW, Bicker G (1985) Flight-initiating interneurons in the locust. J Neurophysiol 53:910–925

    Google Scholar 

  • Robertson RM, Pearson KG (1983) Interneurons in the flight system of the locust: distribution, connections, and resetting properties. J Comp Neurol 215:33–50

    Google Scholar 

  • Robertson RM, Pearson KG (1985) Neural circuits in the flight system of the locust. J Neurophysiol 53:110–128

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Google Scholar 

  • Ronacher B, Miller S (1986) Localization of neuronal pathways involved in two behavioral reactions in a grasshopper. Naturwissenschaften 73:737–738

    Google Scholar 

  • Remacher B, Helversen D von, Helversen O von (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374

    Google Scholar 

  • Ronacher B, Wolf H, Reichert H (1988) Locust flight behavior after hemisection of individual thoracic ganglia: evidence for hemiganglionic premotor centres. J Comp Physiol A 163:749–759

    Google Scholar 

  • Stein PSG (1977) A comparative approach to the neural control of locomotion. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum, New York, pp 227–239

    Google Scholar 

  • Stein PSG (1978) Motor systems, with specific reference to the control of locomotion. Annu Rev Neurosci 1:61–81

    Google Scholar 

  • Stevenson PS, Kutsch W (1987) A reconsideration of the central pattern generator concept for locust flight. J Comp Physiol A 161:115–129

    Google Scholar 

  • Stumpner A (1988) Auditorische thorakale Interneurone vonChorthippus biguttulus L.: Morphologische und physiologische Charakterisierung und Darstellung ihrer Filtereigenschaften für verhaltensrelevante Lautattrappen. Thesis, Universität Erlangen-Nürnberg

  • Treherne JE (1974) The environment and function of insect nerve cells. In: Treherne JE (ed) Insect neurobiology. North-Holland, Amsterdam, pp 187–244

    Google Scholar 

  • Weeks JC (1981) Neuronal basis of leech swimming: separation of swim initiation, pattern generation, and intersegmental coordination by selective lesions. J Neurophysiol 45:698–723

    Google Scholar 

  • Weeks JC (1982) Synaptic basis of swim initiation in the leech. II. A pattern-generating neuron (cell 208) which mediates motor effects of swim-initiating neurons. J Comp Physiol 148:265–279

    Google Scholar 

  • Wendler G (1985) Insect locomotory systems: control by proprioceptive and exteroceptive inputs. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Berlin, pp 245–254

    Google Scholar 

  • Wolf H, Ronacher B, Reichert H (1988) Patterned synaptic drive to locust flight motoneurons after hemisection of thoracic ganglia. J Comp Physiol A 163:761–769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronacher, B. Stridulation of acridid grasshoppers after hemisection of thoracic ganglia: evidence for hemiganglionic oscillators. J. Comp. Physiol. 164, 723–736 (1989). https://doi.org/10.1007/BF00616745

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616745

Keywords

Navigation