Skip to main content
Log in

Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe

Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Immunocytochemical localization of actin in rat cerebral cortex embedded in the resin LR White was performed using 5 nm colloidal gold as a probe. Antigenicity is maintained throughout the embedding procedure and the low electron opacity of LR White permits fine filamentous structures to be visualized. Control experiments included incubating the sections with normal goat serum or mouse IgG instead of the primary antibody, preadsorbing the antibody with actin from bovine muscle or liver acetone powder, and heat treating the primary antibody.

  2. 2.

    Immunoreactive actin was identified primarily in dendritic spines, particularly in the postsynaptic density (PSD), the subsynaptic web, and the spine apparatus and endothelial and smooth muscle cells of blood vessels.

  3. 3.

    Within dendritic spines, actin which is labeled in the PSD is in continuity with the filaments of the subsynaptic web. These filaments, in turn, are in continuity with the spine apparatus and/or the spine membranes adjacent to the PSD. The PSD may therefore function like other submembranous filamentous arrays which communicate events occurring at the membrane, in this case, the postsynaptic membrane, to the underlying cytoskeletal network, i.e., the subsynaptic web of the spine. It is also suggested that the actin present in the spine may play a role in changes in spine shape and synaptic curvature. Some actin was also seen in the presynaptic process in association with synaptic vesicles, the filamentous network that is contiguous with the synaptic vesicle membrane, and the presynaptic dense projections. Actin may be involved in dynamic processes in the presynaptic ending which include vesicle translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Andrews, S. B., Leapman, R. D., Landis, D. M. D., Fiori, C. E., and Reese, T. S. (1984). Elemental distribution in rapid-frozen cerebellar cortex.J. Cell Biol. 99(4):424a.

    Google Scholar 

  • Beach, R. L., Kelly, P. T., Babitch, J. A., and Cotman, C. W. (1981). Identification of myosin in isolated synaptic junctions.Brain Res. 22575–93.

    Google Scholar 

  • Bendayan, M. (1983). Ultrastructural localization of actin in muscle epithelial and secretory cells by applying the protein A-gold immunocytochemical technique.Histochem. J. 1539–58.

    Google Scholar 

  • Blomberg, F., Cohen, R. S., and Siekevitz, P. (1977). Structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure.J. Cell Biol. 74204–225.

    Google Scholar 

  • Brandon, J. G., and Coss, R. G. (1982). Rapid dendritic spine stem shortening during one-trial learning: The honeybee's first orientation flight.Brain Res. 25251–61.

    Google Scholar 

  • Caceres, A., Payne, M. R., Binder, L. I., and Steward, O. (1983). Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines.Proc. Nat. Acad. Sci. USA 801738–1742.

    Google Scholar 

  • Carlin, R. K., Bartelt, D. C., and Siekevitz, P. (1983). Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations.J. Cell Biol. 96443–448.

    Google Scholar 

  • Cohen, R. S., Wolosewick, J. J., Becker, R. P., and Pappas, G. D. (1983). Fine structure of synapses of the central nervous system in resinless sections.J. Submicrosc. Cytol. 15(4):849–863.

    Google Scholar 

  • Coss, R. G., and Globus, A. (1979). Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish.Dev. Psychobiol. 12347–358.

    Google Scholar 

  • Craig, S., and Miller, C. (1984). LR White resin and improved on-grid immunogold detection of vicilin, a pea seed storage protein.Cell Biol. Int. Rep. 8(10):879–886.

    Google Scholar 

  • Crick, F. (1982). Do dendritic spines twitch?Trends Neurosci. 544–46.

    Google Scholar 

  • De Mey, J. R. (1983). The preparation of immunoglobin gold conjugates (IGS reagents) and their use as markers for light and electron microscopic immunocytochemistry. InImmunohistochemistry (A. C. Cuello, Ed.), John Wiley and Sons, New York, pp. 347–372.

    Google Scholar 

  • Desmond, N. L., and Levy, W. B. (1983). Synaptic correlates of associated potentiation/depression: An ultrastructural study in the hippocampus.Brain Res. 26521–30.

    Google Scholar 

  • Drenckhahn, D., Frotscher, M., and Kaiser, W. (1984). Concentration of F-actin in synaptic formations of hippocampus as visualized by staining with fluorescent phalloidin.Brain Res. 300381–384.

    Google Scholar 

  • Edelman, G. M. (1976). Surface modulation in cell recognition and cell growth.Science 192218–226.

    Google Scholar 

  • Ellisman, M. H. (1984). A transcellular filament network that interconnects cells in tissues.Soc. Neurosci. Abstr. 10(1):44.

    Google Scholar 

  • Fields, R. D., and Ellisman, M. H. (1984). Synaptic morphology and differences in sensitivity are correlated.Science 228197–199.

    Google Scholar 

  • Fifkova, E., and Anderson, C. L. (1981). Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer.Exp. Neurol. 74621–627.

    Google Scholar 

  • Fifkova, E., and Delay, R. J. (1982). Cytoplasmic actin in dendritic spines as a possible mediator of synaptic plasticity.J. Cell Biol. 95350–365.

    Google Scholar 

  • Fifkova, E., and Van Harreveld, A. (1977). Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area.J. Neurocytol. 6211–230.

    Google Scholar 

  • Fifkova, E., Markham, J. A., and Delay, R. J. (1983). Calcium in the spine apparatus of dendritic spines in the dentate molecular layer.Brain Res. 266163–168.

    Google Scholar 

  • Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Fiqura, K., Hasilik, A., and Schwartz, A. L. (1984). Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver.Cell 37195–204.

    Google Scholar 

  • Goldman, J. E. (1983). Immunocytochemical studies of actin localization in the central nervous system.J. Neurosci. 31952–1962.

    Google Scholar 

  • Grab, D. J., Berzins, K., Cohen, R. S., and Siekevitz, P. (1979). Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex.J. Biol. Chem. 2548690–8696.

    Google Scholar 

  • Groswald, D. E., and Kelly, P. T. (1984). Evidence that a cerebellum-enriched, synaptic junction glycoprotein is related to fodrin and resists extraction with Triton in a calcium-dependent manner.J. Neurochem. 42534–546.

    Google Scholar 

  • Guldner, F. H., and Ingham, C. A. (1979). Plasticity in synaptic appositions of optic nerve afferents under different lighting conditions.Neurosci. Lett. 14235–240.

    Google Scholar 

  • Gulley, R. L., and Reese, T. S. (1981). Cytoskeletal organization at the postsynaptic complex.J. Cell Biol. 91298–302.

    Google Scholar 

  • Illis, L. S. (1969). Enlargement of spinal cord synapses after repetitive stimulation of a single posterior root.Nature 22376–77.

    Google Scholar 

  • Katsumara, H., Murakami, F., and Tsukahara, N. (1982). Actin filaments in dendritic spines of red nucleus neurons demonstrated by immunoferritin localization and heavy meromyosin binding.Biomed. Res. 3(3): 337–340.

    Google Scholar 

  • Kelly, P. T., and Cotman, C. W. (1978), Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density protein.J. Cell Biol. 79173–183.

    Google Scholar 

  • Landis, D. M. D., and Reese, T. M. (1983). Cytoplasmic organization in cerebellar dendritic spines.J. Cell Biol. 971169–1178.

    Google Scholar 

  • LeBeaux, Y. J., and Willemot, J. (1975). An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labelling. II. The synapses.Cell Tissue Res. 16037–68.

    Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M., and Lynch, G. (1980). Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus.J. Neurophysiol. 44247–258.

    Google Scholar 

  • Lin, C., Dedman, J. R., Brinkley, B. R., and Means, A. R. (1980). Localization of calmodulin in rat cerebellum by immunoelectron microscopy.J. Cell Biol. 85473–480.

    Google Scholar 

  • Lin, J. J.-C. (1982). Mapping structural proteins of cultured cells by monoclonal antibodies.Cold Spring Harbor Symp. Quant. Biol. 46769–783.

    Google Scholar 

  • Lynch, G., and Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis.Science 2241057–1063.

    Google Scholar 

  • Matus, A. I., and Taff-Jones, D. H. (1978). Morphology and molecular composition of isolated postsynaptic junctional structure.Proc. Roy. Soc. Lond. Ser. B 203135–151.

    Google Scholar 

  • Matus, A., Ackermann, M., Pehling, G., Randolph Byers, H., and Fujiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities.Proc. Natl, Acad. Sci. USA 797590–7594.

    Google Scholar 

  • Medosch, C. M., and Diamond, M. C. (1982). Rat occipital cortical synapses after ovariectomy.Exp. Neurol. 75120–133.

    Google Scholar 

  • Mollgaard, K., Diamond, M. C., Bennet, E. L., Rosenzweig, M. R., and Lindner, B. (1971). Quantitative synaptic changes with differential experience in rat brain.Int. J. Neurosci. 2113–128.

    Google Scholar 

  • Newman, G. R., Jasani, B., and Williams, E. D. (1983). A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope.Histochem J. 15543–555.

    Google Scholar 

  • Puszkin, S., and Kochwa, S. (1974). Regulation of neurotransmitter release by a complex with relaxing protein isolated from rat brain synaptosomes.J. Biol. Chem. 2697711–7714.

    Google Scholar 

  • Puszkin, S., Nicklas, W. J., and Berl, S. (1972). Actomyosin-like protein in brain: Subcellular distribution.J. Neurochem. 191319–1333.

    Google Scholar 

  • Stossel, T. P., Hartwig, J., and Yin, H. L. (1981). Actin gelation and the structure of movement of cortical cytoplasm. InCytoskeletal Elements and Plasma Membrane Organization (G. Poste and G. L. Nicholson, Eds.), Elsevier/North Holland, Amsterdam, pp. 139–168.

    Google Scholar 

  • Toh, B. H., Gallichio, H. A., Jeffrey, P. L., Livett, B. G., Muller, H. K., and Cauchi, M. N. (1976). Anti-actin stains synapses.Nature 264648–650.

    Google Scholar 

  • Uylings, H. B. M., Kuypers, K., Diamond, M. C., and Veltman, W. A. M. (1978). Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats.Exp. Neurol,62658–677.

    Google Scholar 

  • Van Harreveld, A., and Fifkova, E. (1975). Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation.Exp. Neurol. 49736–749.

    Google Scholar 

  • Van Harreveld, A., and Trubatch, J. (1975). Synaptic changes in frog brain after stimulation with potassium chloride.J. Neurocytol. 433–46.

    Google Scholar 

  • Wesa, J. M., Chang, F.-L. F., Greenough, W. T., and West, R. W. (1982). Synaptic contact curvature: Effects of differential rearing on rat occipital cortex.Dev. Brain Res. 4253–257.

    Google Scholar 

  • West, R. W., and Greenough, W. R. (1972). Effect of environmental complexity on cortical synapses of rats: Preliminary studies.Behav. Biol. 7279–284.

    Google Scholar 

  • Westrum, L. E., Jones, D. H., Gray, E. G., and Barron, J. (1980). Microtubules, dendritic spines and spine apparatuses.Cell Tissue Res. 208171–181.

    Google Scholar 

  • Whitnall, M. H., Gainer, H., Cox, B. M., and Molineaux, C. J. (1983). Dynorphin-A-(1-8) is contained within vasopressin neurosecretory vesicles in rat pituitary.Science 2221137–1139.

    Google Scholar 

  • Wilson, C. J., Groves, P. M., Kitai, S. T., and Linder, C. J. (1983). Three-dimensional structure of dendritic spines in the rat neostriatum.J. Neurosci. 3(2):383–398.

    Google Scholar 

  • Wolosewick, J. J. (1984). Distribution of actin in migrating leukocytes in vivo.Cell Tissue Res. 236517–525.

    Google Scholar 

  • Wood, J. G., Wallace, R. W., Whitaker, J. N., and Cheung, W. Y. (1980). Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CAM-BP80) in basal ganglia from mice brain.J. Cell Biol. 8466–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R.S., Chung, S.K. & Pfaff, D.W. Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol 5, 271–284 (1985). https://doi.org/10.1007/BF00711012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711012

Key words

Navigation