Skip to main content
Log in

Retinal dopamine D1 and D2 receptors: Characterization by binding or pharmacological studies and physiological functions

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    In the retinal inner nuclear layer of the majority of species, a dopaminergic neuronal network has been visualized in either amacrine cells or the so-called interplexiform cells.

  2. 2.

    Binding studies of retinal dopamine receptors have revealed the existence of both D1- as well D2-subtypes. The D1-subtype was characterized by labeled SCH 23390 (K d ranging from 0.175 to 1.6 nM andB max from 16 to 482 fmol/mg protein) and the D2-subtype by labelled spiroperidol (K d ranging from 0.087 to 1.35 nM andB max from 12 to 1500 fmol/mg protein) and more selectively by iodosulpiride (K d 0.6 nM andB max 82 fmol/mg protein) or methylspiperone (K d 0.14 nM andB max 223 fmol/mg protein).

  3. 3.

    Retinal dopamine receptors have been also shown to be positively coupled with adenylate cyclase activity in most species, arguing for the existence of D1-subtype, whereas in some others (lower vertebrates and rats), a negative coupling (D2-subtype) has been also detected in peculiar pharmacological conditions implying various combinations of dopamine or a D2-agonist with a D1-antagonist or a D2-antagonist in the absence or presence of forskolin.

  4. 4.

    A subpopulation of autoreceptors of D2-subtype (probably not coupled to adenylate cyclase) also seems to be involved in the modulation of retinal dopamine synthesis and/or release.

  5. 5.

    Light/darkness conditions can affect the sensitivity of retinal dopamine D1 and/or D2-receptors, as studied in binding or pharmacological experiments (cAMP levels, dopamine synthesis, metabolism and release).

  6. 6.

    Visual function(s) of retinal dopamine receptors were connected with the regulation of electrical activity and communication (through gap junctions) between horizontal cells mediated by D1 and D2 receptor stimulation. Movements of photoreceptor cells and migration of melanin granules in retinal pigment epithelial cells as well as synthesis of melatonin in photoreceptors were on the other hand mediated by the stimulation of D2-receptors.

  7. 7.

    Other physiological functions of dopamine D1-receptors respectively in rabbit and in embryonic avian retina would imply the modulation of acetylcholine release and the inhibiton of neuronal growth cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agui, T., Chase, T. N., and Kebabian, J. W. (1988). Identification of D1-dopamine receptor in chicken embryo retina with [125I]SCH 23982.Brain Res. 45249–56.

    Google Scholar 

  • Amlaiky, N., and Caron, M. G. (1986). Identification of the D2-dopamine receptor binding subunit in several mammalian tissues and species by photoaffinity labeling.J. Neurochem. 47196–204.

    Google Scholar 

  • Bauer, B., Ehinger, B., and Aberg, L. (1980). [3H]dopamine release from the rabbit retina.Albrecht Graefes Arch. Klin. Ophthalmol. 21571–78.

    Google Scholar 

  • Besharse, J. C. (1982). The daily light-dark cycle and rhythmic metabolism in the photoreceptor-pigment epithelial complex.Prog. Retin. Res. 181–124.

    Google Scholar 

  • Besharse, J. C., Iuvone, P. M., and Pierce, M. E. (1988). Regulation of rythmic photoreceptor metabolism: A role for post-receptoral neurons.Prog. Retin. Res. 721–61.

    Google Scholar 

  • Bischoff, S. (1986). Mesohippocampal dopamine system. Characterization, functional and clinical implications. InThe Hippocampus, Vol. 3. (R. L. Isaacson and K. H. Pribram, Eds.). Plenum, New York, pp. 1–32.

    Google Scholar 

  • Bodis-Wollner, I. (1988). Altered spatio-temporal contrast vision in Parkinson's disease and MPTP treated monkeys: The role of dopamine. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner and M. Piccolino, Eds.), Alan R. Liss, New York, pp. 205–220.

    Google Scholar 

  • Bodis-Wollner, I., and Piccolino, M. (Eds.) (1988).Dopaminergic Mechanisms in Vision, Alan R. Liss, New York.

    Google Scholar 

  • Bodis-Wollner, I., Onofrj, M. C., Marx, M. S., and Mylin, A. T. (1986). Visual evoked potentials in Parkinson's disease: Spatial frequency, temporal rate, contrast and the effect of dopaminergic drugs. InEvoked Potentials. Frontiers of Clinical Neuroscience, Vol. 3 (R. O. Cracco and I. Bodis-Wollner, Eds.), Alan R. Liss, New York, pp. 307–319.

    Google Scholar 

  • Boatright, J. H., Hoel, M. J., and Iuvone, P. M. (1989). Stimulation of endogenous dopamine release and metabolism in amphibian retina by light- and K+-evoked depolarization.Brain Res. 482164–168.

    Google Scholar 

  • Bowyer, J. F., and Weiner, N. (1989). K+ channel and adenylate cyclase involvement in regulation of Ca++-evoked release of [3H]dopamine from synaptosomes.J. Pharmacol. Exp. Ther. 248514–520.

    Google Scholar 

  • Brainard, G. C., and Morgan, W. W. (1987). Light-induced stimulation of retinal dopamine: A dose-response relationship.Brain Res. 424199–203.

    Google Scholar 

  • Brann, M. R., and Young, W. S., III, (1986). Dopamine receptors are located on rods in bovine retina.Neurosci. Lett. 69221–226.

    Google Scholar 

  • Brown, J. H., and Makman, M. H. (1972). Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina.Proc. Natl. Acad. Sci. USA 69539–543.

    Google Scholar 

  • Burnside, B., and Nagle, B. (1983). Retinomotor movements of photoreceptors and retinal pigment epithelium: Mechanisms and regulation.Prog. Retin. Res. 367–109.

    Google Scholar 

  • Carlsson, A. (1975). Dopaminergic autoreceptors. InChemical Tools in Catecholamine Research II,Vol. 2 (O. Almgren, A. Carlsson, and J. Engel, Eds.), North-Holland, Amsterdam, pp. 219-225.

  • Carlsson, A., and Lindquist, M. (1963). Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normethanephrine in mouse brain.Acta Pharmacol. Toxicol. 20140–144.

    Google Scholar 

  • Chesselet, M. F. (1984). Presynaptic regulation of neurotransmitter release in the brain: Facts and hypotheses.Neuroscience 12347–375.

    Google Scholar 

  • Clement-Cormier, Y., and Redburn, D. A. (1978). Dopamine-sensitive adenylate cyclase in retina-subcellular distribution.Biochem. Pharmacol. 272281–2282.

    Google Scholar 

  • Cohen, J., Hadjiconstantinou, M., and Neff, N. H. (1983). Activation of dopamine-containing amacrine cells of retina: Light-induced increase of acidic dopamine metabolites.Brain Res. 260125–127.

    Google Scholar 

  • Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E. (1983). The classification of dopamine receptors: Relationship to radioligand binding.Annu. Rev. Neurosci. 643–71.

    Google Scholar 

  • Daw, N. W., Brunken, W. J., and Parkinson, D. (1989). The function of synaptic transmitters in the retina.Annu. Rev. Neurosci. 12205–225.

    Google Scholar 

  • Dearry, A., and Burnside, B. (1985). Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retina.J. Neurochem. 441753–1763.

    Google Scholar 

  • Dearry, A., and Burnside, B. (1986a). Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas. I. Induction of cone contraction is mediated by D2 receptors.J. Neurochem. 461006–1021.

    Google Scholar 

  • Dearry, A., and Burnside, B. (1986b). Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas. II. Modulation by gamma-aminobutyric acid and serotonin.J. Neurochem. 461022–1031.

    Google Scholar 

  • Dearry, A., and Burnside, B. (1988). Dopamine induces light-adaptive retinomotor movements in teleost photoreceptors and retinal pigment epithelium. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner and M. Piccolino, Eds.), Alan R. Liss, New York, pp. 109–135.

    Google Scholar 

  • De Keyser, J., Dierckx, R., Vanderheyden, P., Ebinger, G., and Vauquelin, G. (1988). D1 dopamine receptors in human putamen, frontal cortex and calf retina. Differences in guanine nucleotide regulation of agonist binding and adenylate cyclase stimulation.Brain Res. 44377–84.

    Google Scholar 

  • De Mello, F. G. (1978). The ontogeny of dopamine-dependent increase of adenosine 3′-5′-cyclic monophosphate in the chick retina.J. Neurochem. 311049–1053.

    Google Scholar 

  • De Mello, M. C. F., Ventura, A. L. M., Paes de Carvalho, R., Klein, W. L., and De Mello, F. G. (1982). Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture.Proc. Natl. Acad. Sci. USA 795708–5712.

    Google Scholar 

  • De Montis, G., Porceddu, M. L., Pepitoni, S., Serra, G. P., and Biggio, G. (1988). D1 dopamine receptors in the retina of adult and senescent rats: Physiological and pharmacological modulation. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner and M. Piccolino, Eds.), Alan R. Liss, New York, pp. 71–93.

    Google Scholar 

  • Dowling, J. E. (1986). Dopamine: A retinal neuromodulator?.TINS 9236–240.

    Google Scholar 

  • Dowling, J. E., and Watling, K. J. (1981). Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina.J. Neurochem. 36569–579.

    Google Scholar 

  • Dubocovich, M. L., and Weiner, N. (1981). Modulation of the stimulation-evoked release of [3H]dopamine in the rabbit retina.J. Pharmacol. Exp. Ther. 219701–707.

    Google Scholar 

  • Dubocovich, M. L., and Weiner, N. (1982). Modulation of the stimulation-evoked release of [3H]dopamine through activation of dopamine autoreceptors of the D2 subtype in the isolated rabbit retina. InAdvances in the Biosciences, Vol. 37. Advances in Dopamine Research, (M. Kohsaka, T. Shohmori, Y. Tsukada, and G. N. Woodruff, Eds.), Pergamon Press, Oxford, pp. 273–278.

    Google Scholar 

  • Dubocovich, M. L., and Weiner, N. (1985). Pharmacological differences between the D2 autoreceptor and the D1 dopamine receptor in rabbit retina.J. Pharmacol. Exp. Ther. 233747–754.

    Google Scholar 

  • Dubocovich, M. L., and Zahniser, N. R. (1982). [3H]Spiperone can be used to label either a single or multiple dopaminergic sites in rabbit retina and striatum.Br. J. Pharmacol. 77:367P.

    Google Scholar 

  • Dubocovich, M. L., Lucas, R. C., and Takahashi, J. S. (1985). Light-dependent regulation of dopamine receptors in mammalian retina.Brain Res. 335321–325.

    Google Scholar 

  • Ehinger, B. (1983). Functional role of dopamine in the retina.Prog. Retin. Res. 2213–232.

    Google Scholar 

  • Elena, P. P., Denis, P., Kosina-Boix, M., and Lapalus, P. (1989). Dopamine receptors in rabbit and rat eye: Characterization and localization of DA1 and DA2 binding sites.Curr. Eye Res. 875–83.

    Google Scholar 

  • Feenstra, M. G. P., Sumners, C., Goedemoed, J. H., de Vries, J. B., Rollema, H., and Horn, A. S. (1983). A comparison of the potencies of various dopamine receptor agonists in models for preand postsynaptic receptor activity.Naunyn Schmiedebergs Arch. Pharmacol. 324108–115.

    Google Scholar 

  • Flückiger, E., Briner, U., Clark, B., Closse, A., Enz, A., Gull, P., Hoffmann, A., Markstein, R., Tolcsvai, L., and Wagner, H. R. (1988). Pharmacodynamic profile of CQP 201-403, a novel 8α-amino-ergoline.Experientia 44431–436.

    Google Scholar 

  • Gnegy, M. E., Murihead, N., and Harrison, J. K. (1984). Regulation of calmodulin- and dopamine-stimulated adenylate cyclase activities by light in bovine retina.J. Neurochem. 421632–1640.

    Google Scholar 

  • Godley, B. F., and Wurtman, R. J. (1988). Release of endogenous dopamine from the superfused rabbit retinain vitro: Effect of light stimulation.Brain Res. 452393–395.

    Google Scholar 

  • Gredal, O., Parkinson, D., and Nielsen, M. (1987). Binding of [3H]SCH 23390 to dopamine D1 receptors in rat retinain vitro.Eur. J. Pharmacol. 137241–245.

    Google Scholar 

  • Haubrich, D. R., and Pflueger, A. B. (1982). The autoreceptor control of dopamine synthesis. Anin vitro andin vivo comparison of dopamine agonists.Mol. Pharmacol. 21114–120.

    Google Scholar 

  • Hensler, J. G., and Dubocovich, M. L. (1986). D1-dopamine receptor activation mediates [3H]acetylcholine release from rabbit retina.Brain Res. 398407–412.

    Google Scholar 

  • Hensler, J. G., Cotterell, D. J., and Dubocovich, M. L. (1987). Pharmacological and biochemical characterization of the D1 dopamine receptor mediating acetylcholine release in rabbit retina.J. Pharmacol. Exp. Ther. 243857–867.

    Google Scholar 

  • Herdon, H., Strupish, J., and Nahorski, S. R. (1985). Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: Effects of depolarizing stimuli, amphetamine and synthesis inhibition.Brain Res. 348309–320.

    Google Scholar 

  • Hjorth, S., Carlsson, A., Wikstrom, H., Lindberg, P., Sanchez, D., Hacksell, U., Arvidsson, L.-E., Svensson, U., and Nilsson, J. L. G. (1981). 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors.Life Sci. 281225–1238.

    Google Scholar 

  • Iuvone, P. M. (1984). Regulation of retinal dopamine biosynthesis and tyrosine hydroxylase activity by light.Fed. Proc. 432709–2713.

    Google Scholar 

  • Iuvone, P. M. (1986). Evidence for a D2 dopamine receptor in frog retina that decrease cyclic AMP accumulation and serotonin N-acetyltransferase activity.Life Sci. 38331–342.

    Google Scholar 

  • Iuvone, P. M., and Besharse, J. C. (1986). Cyclic AMP stimulates serotonin N-acetyltransferase activity in Xenopus retinain vitro.J. Neurochem. 4682–88.

    Google Scholar 

  • Iuvone, P. M., Boatright, J. H., and Bloom, M. M. (1987). Dopamine mediates the light-evoked suppression of serotonin N-acetyltransferase activity in retina.Brain Res. 418314–324.

    Google Scholar 

  • Iuvone, P. M., Tigges, M., Fernandes, A., Tigges, J. (1989). Dopamine synthesis and metabolism in rhesus monkey retina: Development, aging, and the effect of monoocular deprivation.Vis. Neurosci. 2465–471.

    Google Scholar 

  • Jensen, R. J., and Daw, N. W. (1983). Towards an understanding of the role of dopamine in the mammalian retina.Vision Res. 231293–1298.

    Google Scholar 

  • Kamp, C. W. (1985). The dopamine system of the retina. InRetinal Transmitters and Modulators: Models for the Brain.Vol. II (W. W. Morgan, Ed.), CRC Press, Boca Raton, Fla. pp. 1–31.

    Google Scholar 

  • Kebabian, J. W., and Calne, D. B. (1979). Multiple receptors for dopamine.Nature 27793–96.

    Google Scholar 

  • Kebabian, J. W., Petzold, G. L., and Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor.”Proc. Natl. Acad. Sci. USA 692145–2149.

    Google Scholar 

  • Kebabian, J. W., Agui, T., van Oene, J. C., Shigematsu, K., and Saavedra, J. M. (1986). The D1 dopamine receptor: New perspectives.TIPS 796–99.

    Google Scholar 

  • Kramer, S. G. (1971). Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of [3H]dopaminein vivo.Invest. Ophthalmol. 10438–452.

    Google Scholar 

  • Lankford, K. L., De Mello, F. G., and Klein, W. L. (1988). D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: Evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.Proc. Natl. Acad. Sci. USA 854567–4571.

    Google Scholar 

  • Lasater, E. M., and Dowling, J. E. (1985). Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells.Proc. Natl. Acad. Sci. USA 823025–3029.

    Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Rakic, P., and Innis, R. B. (1989). Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3H]raclopride.Proc. Natl. Acad. Sci. USA 866412–6416.

    Google Scholar 

  • Magistretti, P. J., and Schorderet, M. (1979). Dopamine receptors in bovine retina: Characterization of [3H]spiroperidol binding and its use for screening dopamine receptor affinity of drugs.Life Sci. 251675–1686.

    Google Scholar 

  • Makman, M. H., and Dvorkin, B. (1986). Binding sites for [3H]SCH 23390 in retina: Properties and possible relationship to dopamine D1-receptors mediating stimulation of adenylate cyclase.Mol. Brain Res. 1261–270.

    Google Scholar 

  • Makman, M. H., Brown, J. H., and Mishra, R. K. (1975). Cyclic AMP in retina and caudate nucleus: Influence of dopamine and other agents.Adv. Cyclic Nucleotide Res. 5661–679.

    Google Scholar 

  • Makman, M. H., Dvorkin, B., Horowitz, S. G., and Thal, L. J. (1980a). Retina contains guanine nucleotide sensitive and insensitive classes of dopamine receptors.Eur. J. Pharmacol. 63217–222.

    Google Scholar 

  • Makman, M. H., Dvorkin, B., Horowitz, S. G., and Thal, L. J. (1980b). Properties of dopamine agonist and antagonist binding sites in mammalian retina.Brain Res. 194403–418.

    Google Scholar 

  • Makman, M. H., Dvorkin, B., and Klein, P. N. (1982). Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina.Proc. Natl. Acad. Sci. USA 794212–4216.

    Google Scholar 

  • Mangel, S. C., and Dowling, J. E. (1985). Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine.Science 2291107–1109.

    Google Scholar 

  • Markstein, R., Enz, A., Vigouret, J. M., Jaton, A., Closse, A., Briner, U., and Gull, P. (1987). Biochemical, behavioural, and endocrine effects of CK 204-933, a novel 8β-ergolene.J. Neural Transm. 69179–199.

    Google Scholar 

  • McGonigle, P., Wax, M. B., and Molinoff, P. B. (1988). Characterization of binding sites for [3H]spiroperidol in human retina.Invest. Ophthalmol. Vis. Sci. 29687–694.

    Google Scholar 

  • Memo, M., Missale, C., Carruba, M. O., and Spano, P. F. (1986). D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent of cyclic AMP.Neurosci. Lett. 71192–196.

    Google Scholar 

  • Monsma, F. J. Jr., Brassard, D. L., and Sibley, D. R. (1989). Identification and characterization of D1 and D2 dopamine receptors in cultured neuroblastoma and retinoblastoma clonal cell lines.Brain Res. 492314–324.

    Google Scholar 

  • Morgan, W. W. (1982). Dopamine neurons in the retina: A new pharmacological model. InCell Biology of the Eye (D. C. McDevitt, Ed.), Academic Press, New York, pp. 553–554.

    Google Scholar 

  • Niznik, H. B. (1987). Dopamine receptors: Molecular Structure and function.Mol. Cell. Endocrinol. 541–22.

    Google Scholar 

  • Nowak, J. Z. (1987). The retina as a model neural tissue: Comparative studies on retinal and brain aminergic mechanisms.Pol. J. Pharmacol. Pharm. 39451–482.

    Google Scholar 

  • Nowak, J. Z. (1988). The isolated retina as a model of the CNS in pharmacology.TIPS 980–82.

    Google Scholar 

  • Nowak, J. Z. (1990). Control of melatonin formation in vertebrate retina.Adv. Pineal Res. 481–90.

    Google Scholar 

  • Nowak, J. Z., and Zurawska, E. (1989a). Dopamine in the rabbit retina and striatum: Diurnal rhythm and effect of light stimulation.J. Neural Transm. 75201–212.

    Google Scholar 

  • Nowak, J. Z., and Zurawska, E. (1989b). Serotonin N-acetyltransferase (NAT) activity in hen retina and pineal gland: In vivo pharmacological induction at noon and antagonism of the light-evoked suppression at night.Neurochem. Int. 15567–573.

    Google Scholar 

  • Nowak, J. Z., Zurawska, E., and Zawilska, J. (1989). Melatonin and its generating system in vertebrate retina: Circadian rhythm, effect of environmental lighting and interaction with dopamine.Neurochem. Int. 14397–406.

    Google Scholar 

  • Nowak, J. Z., Sek, B., and Schorderet, M. (1990a). Bidirectional regulation of cAMP generating system by dopamine-D1 and D2-receptors in the rat retina.J. Neural Transm. 81235–240.

    Google Scholar 

  • Nowak, J. Z., Sek, B., and Zurawska, E. (1990b). Activation of D2 dopamine receptors in hen retina decreases forskolin-stimulated cyclic AMP accumulation and serotonin N-acetyltransferase (NAT) activity.Neurochem. Int. 1673–80.

    Google Scholar 

  • Nowak, J. Z., Zawilska, J., Sek, B., and Schorderet, M. (1990c). Light modulates dopamine-regulated Walsh inhibitor activity and dopamine-dependent cyclic AMP accumulation in the rabbit retina.Pol. J. Pharmacol. Pharm. 42 (in press).

  • Ofori, S., and Schorderet, M. (1988). The rabbit retinain vitro: A pharmacological model to study the synaptic regulation of dopamine synthesis and release. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner and M. Piccolino, Eds.), Alan R. Liss, New York, pp. 41–57.

    Google Scholar 

  • Ofori, S., Bretton, C., Hof, P., and Schorderet, M. (1986a). Investigation of dopamine content, synthesis, and release in the rabbit retinain virto. I. Effects of dopamine precursors, reserpine, amphetamine, and L-DOPA decarboxylase and monoamine oxidase inhibitors.J. Neurochem. 471199–1206.

    Google Scholar 

  • Ofori, S., Magistretti, P. J., and Schorderet, M. (1986b). Investigation of dopamine content, synthesis, and release in the rabbit retinain vitro. II. Effects of high potassium, adenylate cyclase activators, and N-n-propyl-3-(3-hydroxyphenyl)piperidine.J. Neurochem. 471207–1213.

    Google Scholar 

  • Osborne, N. N. (1981). Binding of [3H]-ADTN, a dopamine agonist, to membranes of the bovine retina.Cell. mol. Neurobiol. 1167–174.

    Google Scholar 

  • Pang, S. F., and Allen, A. E. (1986). Extra-pineal melatonin in the retina: Its regulation and physiological function.Pineal Res. Rev. 455–95.

    Google Scholar 

  • Parkinson, D., and Rando, R. R. (1983). Effect of light on dopamine turnover and metabolism in rabbit retina.Invest. Ophthalmol. Vis. Sci. 24384–388.

    Google Scholar 

  • Piccolino, M. (1986). Horizontal cells of the retina: Historical controversies and new interest.Prog. Retin. Res. 5147–161.

    Google Scholar 

  • Piccolino, M., and Demontis, G. (1988). Dopaminergic system and modulation of electrical transmission between horizontal cells in the turtle retina. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner and M. Piccolino, Eds.), Alan R. Liss, New York, pp. 137–162.

    Google Scholar 

  • Piccolino, M., Demontis, G., Witkovsky, P., Strettoi, E., Cappagli, G. C., Porceddu, M. L., De Montis, M. G., Pepitoni, S., Biggio, G., Meller, E., and Bohmaker, K. (1989). Involvement of D1 and D2 dopamine receptors in the control of horizontal cell electrical coupling in the turtle retina.Eur. J. Neurosci. 1247–257.

    Google Scholar 

  • Pierce, M. E., and Besharse, J. C. (1985). Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length.J. Gen. Physiol. 86671–689.

    Google Scholar 

  • Pierce, M. E., and Besharse, J. C. (1986). Melatonin and dopamine interactions in the regulation of rhythmic photoreceptor metabolism. InPineal and Retinal Relationships (P. J. O'Brien and D. C. Klein, Eds.), Academic Press, New York, pp. 219–237.

    Google Scholar 

  • Porceddu, M. L., De Montis, G., Mele, S., Ongini, E., and Biggio, G. (1987). D1 dopamine receptors in the rat retina: Effect of dark adaptation and chronic blockade by SCH 23390.Brain Res. 424264–271.

    Google Scholar 

  • Qu, Z.-X., Fertel, R., Neff, N. H., and Hadjiconstantinou, M. (1989). Pharmacological characterization of rat retinal dopamine receptors.J. Pharmacol. Exp. Ther. 248621–625.

    Google Scholar 

  • Redburn, D. A., and Kyles, C. B. (1980). Localization and characterization of dopamine receptors within two synaptosomes fractions of rabbit and bovine retina.Exp. Eye Res. 30699–708.

    Google Scholar 

  • Redburn, D. A., Clement-Cormier, Y., and Lam, D. M. K. (1980a). GABA and dopamine receptor binding in retinal synaptosomal fractions.Neurochemistry 1167–181.

    Google Scholar 

  • Redburn, D. A., Clement-Cormier, Y., and Lam, D. M. K. (1980b). Dopamine receptors in the goldfish retina: [3H]spiroperidol and [3H]domperidone binding; and dopamine-stimulated adenylate cyclase activity.Life Sci. 2723–31.

    Google Scholar 

  • Reiter, R. J. (1984). Pineal indoles: Production, secretion and actions. InNeuroendocrine Perspectives, Vol. 3 (E. E. Muller and R. M. MacLeod, Eds.), Elsevier, Amsterdam, pp. 345–377.

    Google Scholar 

  • Rogawski, M. A. (1987). New directions in neurotransmitter action: Dopamine provides some important clues.TINS 10200–205.

    Google Scholar 

  • Schaeffer, J. M. (1980). Identification of dopamine receptors in the rat retina.Exp. Eye Res. 30431–437.

    Google Scholar 

  • Schorderet, M. (1989). Receptors coupled to adenylate cyclase in isolated rabbit retina.Neurochem. Int. 14387–395.

    Google Scholar 

  • Schorderet, M., and Magistretti, P. J. (1983). Comparative aspects of the adenylate cyclase system in retina. InProgress in Nonmammalian Brain Research (G. Nistico and L. Bolis, Eds.), CRC Press, Boca Raton, Fla., pp. 185–211.

    Google Scholar 

  • Schorderet, M., Sovilla, J. Y., and Magistretti, P. J. (1980). New findings related to a possible interaction of ergolines and ergopeptines with presynaptic dopamine receptors.Prog. Neuropsychopharmacol. Suppl.: 315.

    Google Scholar 

  • Seamon, K. B., and Daly, J. W. (1986). Forskolin: Its biological and chemical properties.Adv. Cyclic Nucleotide Protein Phosphorylation Res. 201–150.

    Google Scholar 

  • Seeman, P. (1981). Brain dopamine receptors.Pharmacol. Rev. 32229–313.

    Google Scholar 

  • Seeman, P., and Niznik, H. B. (1988). Dopamine D1 receptor pharmacology.ISI Atlas Sci. Pharmacol. 161-170.

  • Seiler, M. P., Markstein, R., Walkinshaw, M. D., and Boelsterli, J. J. (1989). Characterization of dopamine receptor subtypes by comparative structure-activity relationships: Dopaminomimetic activities and solid state conformation of monohydroxy-1,2,3,4,4a,5,10,10a-octahydrobenz[g]quinolines and its implications for a rotamer-based dopamine receptor model.Mol. Pharmacol. 35643–651.

    Google Scholar 

  • Sovilla, J. Y., and Schorderet, M. (1982). L-dopa mediated accumulation of cyclic AMP in isolated rabbit retinaein vitro. Effects of light and/or pharmacological factors.Life Sci. 312081–2092.

    Google Scholar 

  • Spano, P. F., Kumakura, K., and Trabucchi, M. (1976). Dopamine-sensitive adenylate cyclase in the retina: A point of action for d-LSD.Adv. Biochem. Psychopharmacol. 15357–365.

    Google Scholar 

  • Stoof, J. C., and Kebabian, J. W. (1984). Two dopamine receptors: Biochemistry, physiology and pharmacology.Life Sci. 352281–2296.

    Google Scholar 

  • Stoof, J. C., Werkman, T. R., Lodder, J. C., and De Vlieger, T. (1986). Growth hormone producing cells inLymnaea stagnalis as a model system for mammalian dopamine receptors?TIPS 77–9.

    Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S. (1984). Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina.J. Neurosci. 41271–1280.

    Google Scholar 

  • Thal, L. J., Horowitz, S. G., Dvorkin, B., and Makman, M. H. (1980). Evidence for loss of brain [3H]spiroperidol and [3H]ADTN binding sites in rabbit brain with aging.Brain Res. 192185–194.

    Google Scholar 

  • Tornqvist, K., Yang, X. L., and Dowling, J. E. (1988). Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells.J. Neurosci. 82279–2288.

    Google Scholar 

  • Van Buskirk, R., and Dowling, J. E. (1981). Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP.Proc. Natl. Acad. Sci. USA 787825–7829.

    Google Scholar 

  • Vanderheyden, P., Ebinger, G., Kanarek, L., and Vauquelin, G. (1986). Epinephrine and norepinephrine stimulation of adenylate cyclase in bovine retina homogenate: Evidence for interaction with the dopamine D1 receptor.Life Sci. 381221–1227.

    Google Scholar 

  • Ventura, A. L. M., Cavalcante, L. A., and De Mello, F. G. (1989). The ontogeny of dopaminergic D1 receptors in the avian retina: Localization and kinetic properties.J. Neurochem. 52 Suppl.:S157.

  • Watling, K. J. (1980). [3H]spiperone labels dopamine receptors in homogenates of bovine retina.Br. J. Pharmacol. 7047P-48P.

    Google Scholar 

  • Watling, K. J. (1983). A function for dopamine-sensitive adenylate cyclase in the retina?TIPS 4328–329.

    Google Scholar 

  • Watling, K. J., and Dowling, J. E. (1981). Dopaminergic mechanisms in the teleost retina. I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists and ergots.J. Neurochem. 36559–568.

    Google Scholar 

  • Watling, K. J., and Iversen, L. L. (1981). Comparison of the binding of [3H]spiperone and [3H]domperidone in homogenates of mammalian retina and caudate nucleus.J. Neurochem. 371130–1143.

    Google Scholar 

  • Watling, K. J., Dowling, J. E., and Iversen, L. L. (1979). Dopamine receptors in the retina may be all linked to adenylate cyclase.Nature 281578–580.

    Google Scholar 

  • Wiechmann, A. F. (1986). Melatonin: Parallels in pineal gland and retina.Exp. Eye. Res. 42507–527.

    Google Scholar 

  • Witkowsky, P., Stone, S., and Besharse, J. C. (1988a). The effects of dopamine and related ligands on photoreceptor to horizontal cell transfer in the Xenopus retina.Biomed. Res. 9 (Suppl. 2): 93–107.

    Google Scholar 

  • Witkowsky, P., Stone, S., and Besharse, J. C. (1988b). Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina.Brain Res. 449332–336.

    Google Scholar 

  • Yang, X. L., Tornqvist, K., and Dowling, J. E. (1988). Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness.J. Neurosci. 82269–2278.

    Google Scholar 

  • Yeh, H. H., Battelle, B. A., and Puro, D. G. (1984). Dopamine regulates synaptic transmission mediated by cholinergic neurons of the rat retina.Neuroscience 13901–909.

    Google Scholar 

  • Zarbin, M. A., Wamsley, J. K., Palacios, J. M., and Kuhar, M. J. (1986). Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic and muscarinic cholinergic receptors in the rat, monkey and human retina.Brain Res. 37475–92.

    Google Scholar 

  • Zawilska, J. and Iuvone, P. M. (1989). Catecholamine receptors regulating serotonin N-acetyltransferase activity and melatonin content of chicken retina pineal gland: D2-dopamine receptors in retina and alpha-2 adrenergic receptors in pineal gland.J. Pharmacol. Exp. Ther. 25086–92.

    Google Scholar 

  • Zurawska, E., and Nowak, J. Z. (1990). Serotonin N-acetyltransferase (NAT) in mammalian retina: Role of cyclic AMP and calcium ions.Folia Histochem. Cytobiol. 28 (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schorderet, M., Nowak, J.Z. Retinal dopamine D1 and D2 receptors: Characterization by binding or pharmacological studies and physiological functions. Cell Mol Neurobiol 10, 303–325 (1990). https://doi.org/10.1007/BF00711177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711177

Key words

Navigation