Skip to main content
Log in

GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in neuro-2A cells

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

This study demonstrates modulation by GM1 ganglioside of prostaglandin E1 (PGE1)-induced cAMP formation in Neuro-2a neuroblastoma cells. Pretreatment of the cells with neuraminidase, an enzyme that increases cell surface GM1, resulted in significant elevation of PGE1-induced cAMP formation, as did preincubation of the cells with nmolar concentrations of GM1. Pretreatment with brain ganglioside mixture lacking GM1 had no effect. Cholera toxin B subunit, a specific GM1-binding ligand, inhibited adenylyl cyclase. When the concentration of exogenous GM1 in which the cells were preincubated was increased from nmolar to μmolar levels there was a dose-responsive fall off in cAMP elevation, attributed to progressive inhibition of adenylyl cyclase by increasing GM1. These results are interpreted as indicating modulation of this PGE1 receptor in Neuro-2a cells by plasma membrane-localized GM1 in a structure-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PGE1:

prostaglandin E1

Ctx B:

B subunit of cholera toxin

BBG:

bovine brain ganglioside mixture

DMEM:

Dulbecco's modified Eagle's medium

FBS:

fetal bovine serum

IBMX:

3-isobutyl-1-methylxanthine

N'ase:

neuraminidase

D-PBS:

Dulbecco's phosphate-buffered saline

References

  1. Yu RK, Saito M (1989) InNeurobiology of Glycoconjugates (Margolis RU, Margolis RK eds) pp. 1–42. New York: Plenum Press.

    Google Scholar 

  2. Ohashi Y, Gage DA, Sweeley CC (1991) InTechniques in Diagnostic Human Biochemical Genetics (Hommes FA ed) pp. 239–65, New York: Wiley-Liss, Inc.

    Google Scholar 

  3. Mullin BR, Fishman PH, Lee G, Aloj SmM, Ledley FD, Winand RJ, Kohn LD, Brady RO (1976)Proc Natl Acad Sci USA 73: 842–46.

    Google Scholar 

  4. Lee G, Aloj SM, Brady RO, Kohn LD (1976)Biochem Biophys Res Commun 73: 370–77.

    Google Scholar 

  5. Lee G, Aloj SM, Kohn LD (1977)Biochem Biophys Res Commun 77: 434–41.

    Google Scholar 

  6. Hakomori S-i (1993)Biochem Soc Trans 21: 583–95.

    Google Scholar 

  7. Hakomori S-i, Igarashi Y (1993)Adv Lip Res 25: 147–62.

    Google Scholar 

  8. Hakomori S-i (1990)J Biol Chem 265: 18713–16.

    Google Scholar 

  9. Bremer EG, Hakomori S-i (1984) InGanglioside Structure, Function, and Biomedical Potential (Ledeen RW, Yu RK, Rapport MM, Suzuki K, eds) pp. 381–94. NY: Plenum Press.

    Google Scholar 

  10. Bremer EG, Schlessinger J, Hakomori S-i (1986)J Biol Chem 261: 2434–40.

    Google Scholar 

  11. Bremer EG, Hakomori S-i, Bowen-Pope DF, Raines E, Ross R (1984)J Biol Chem 259: 6818–25.

    Google Scholar 

  12. Brocklyn JV, Bremer EG, Yates AJ (1993)J Neurochem 61: 371–74.

    Google Scholar 

  13. Nojiri H, Strored M, Hakomori S-i (1991)J Biol Chem 266: 4531–37.

    Google Scholar 

  14. Shen KF, Crain SM, Ledeen RW (1991).Brain Res 559: 130–38.

    Google Scholar 

  15. Skrivanek JA, Livermore GH (1981)Trans Am Soc Neurochem 12: 236.

    Google Scholar 

  16. Wu G, Fan SF, Lu ZH, Ledeen RW, Crain SM (1995)J Neurosci Res:42: 493–503.

    Google Scholar 

  17. Wu G, Lu ZH, Ledeen RW (1991)Develop Brain Res 61: 217–28.

    Google Scholar 

  18. Wu G, Ledeen RW (1991).J. Neurochem 56: 95–104.

    Google Scholar 

  19. Fishman PH (1982)J Membr Biol 69: 85–97.

    Google Scholar 

  20. Wu G, Ledeen RW (1994)Prog Brain Res 101: 101–12.

    Google Scholar 

  21. Saqr HE, Pearl DK, Yates AJ (1993)J Neurochem 61: 395–411.

    Google Scholar 

  22. Ledeen RW, Wu G (1992)Trends Glycosci Glycotech 4: 174–87.

    Google Scholar 

  23. Saito M, Frielle T, Benovic J, Ledeen RW (1995)Biochim Biophys Acta:1267: 1–5.

    Google Scholar 

  24. Shen KF, Crain SM (1990)Brain Res 531: 1–7.

    Google Scholar 

  25. Wu G, Lu Z, Ledeen RW (1995)J Neurochem 64: S104.

  26. Berry-Kravis E, Dawson G (1985)J Neurochem 45: 1739–47.

    Google Scholar 

  27. Wolfe LS, Coceani F (1979)Ann Rev Physiol 41: 669–84.

    Google Scholar 

  28. Coleman RA, Smith WL, Naumiya S (1994)Am Soc Pharmacol Exp Ther 46: 205–29.

    Google Scholar 

  29. An S, Yang J, Goetzl EJ (1993)Biochem Biophys Commun 197: 263–70.

    Google Scholar 

  30. Honda A, Sugimoto Y, Namba T, Watabe A, Ire A, Negishi M, Narumiya S, Ichikawa A (1993)J Biol Chem 268: 7759–62.

    Google Scholar 

  31. Sando T, Usui T, Tanaka I, Mori K, Sasaki Y, Fukuda Y, Nambra T, Sugimoto A, Ichikawa A, Narumiya S, Nakao K (1994)Biochem Biophys Commun 200: 1329–33.

    Google Scholar 

  32. Ammer H, Schulz R (1993)Mol Pharmacol 43: 556–63.

    Google Scholar 

  33. Dacremont G, De Baets M, Kaufman JM, Elewaut A, Vermeulen A (1984)Biochim Biophys Acta 770: 142–47.

    Google Scholar 

  34. Partington CR, Daly JW (1979)Mol Pharmacol 15: 484–91.

    Google Scholar 

  35. Iyengar R (1993)FASEB J 7: 768–75.

    Google Scholar 

  36. Kielczynski W, Harrison L, Leedman P (1991)Proc Natl Acad Sci USA 88: 1991–95.

    Google Scholar 

  37. Mullin BR, Fishman PH, Lee G, Aloj SM, Ledley FD, Winand RJ, Kohn LD, Brady RO (1976)Proc Natl Acad Sci USA 73: 842–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Lu, ZH. & Ledeen, R.W. GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in neuro-2A cells. Glycoconjugate J 13, 235–239 (1996). https://doi.org/10.1007/BF00731498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731498

Keywords

Navigation