Skip to main content
Log in

Adenosine in vertebrate retina: Localization, receptor characterization, and function

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The uptake of [3H] adenosine into specific populations of cells in the inner retina has been demonstrated. In mammalian retina, the exogenous adenosine that is transported into cells is phosphorylated, thereby maintaining a gradient for transport of the purine into the cell.

  2. 2.

    Endogenous stores of adenosine have been demonstrated by localization of cells that are labeled for adenosine-like immunoreactivity. In the rabbit retina, certain of these cells, the displaced cholinergic, GABAergic amacrine cells, are also labeled for adenosine.

  3. 3.

    Purines are tonically released from dark-adapted rabbit retinas and cultured embryonic chick retinal neurons. Release is significantly increased with K+ and neurotransmitters. The evoked release consists of adenosine, ATP, and purine metabolites, and while a portion of this release is Ca2+ dependent, one other component may occur via the bidirectional purine nucleoside transporter.

  4. 4.

    Differential distributions of certain enzymes involved in purine metabolism have also been localized to the inner retina.

  5. 5.

    Heterogeneous distributions of the two subtypes of adenosine receptors, A1 and A2, have been demonstrated in the mammalian retina. Coupling of receptors to adenylate cyclase has also been demonstrated.

  6. 6.

    Adenosine A1 receptor agonists significantly inhibit the K+-stimulated release of [3H]-acetylcholine from the rabbit retina, suggesting that endogenous adenosine may modulate the light-evoked or tonic release of ACh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnes, S., and Hille, B. (1989). Ionic channels of the inner segment of tiger salamander cone photoreceptors.J. Gen. Physiol. 94719–743.

    Google Scholar 

  • Bender, A. S., and Hertz, L. (1986). Similarities of adenosine uptake systems in astrocytes and neurons in primary cultures.Neurochem. Res. 111507–1524.

    Google Scholar 

  • Bender, A. S., Wu, P. H., and Phillis, J. W. (1981). The rapid uptake and release of [3H]adenosine by rat cerebral cortical synaptosomes.J. Neurochem. 36651–660.

    Google Scholar 

  • Blazynski, C. (1987). Adenosine A1 receptor-mediated inhibition of adenylate cyclase in rabbit retina.J. Neurosci. 72522–2528.

    Google Scholar 

  • Blazynski, C. (1989a). Identification and localization of adenosine receptors and adenosinergic neurons in mammalian retinas.J. Neurochem. 52S148-S148 (abstr.).

    Google Scholar 

  • Blazynski, C. (1989b). Displaced cholinergic, GABAergic amacrine cells in the rabbit retina also contain adenosine.Vis. Neurosci. 3425–431.

    Google Scholar 

  • Blazynski, C. (1990). Discrete distributions of adenosine receptors in mammalian retina.J. Neurochem. 54648–655.

    Google Scholar 

  • Blazynski, C., Kinscherf, D. A., Geary, K. M., and Ferrendelli, J. A. (1986). Adenosine-mediated regulation of cyclic AMP levels in isolated incubated retinas.Brain Res. 366224–229.

    Google Scholar 

  • Blazynski, C., Cohen, A. I., Früh, B., and Niemeyer, G. (1989a). Adenosine: autoradiographic localisation and electrophysiological effects in the cat retina.Invest. Ophthalmol. Vis. Sci. 302533–2536.

    Google Scholar 

  • Blazynski, C., Mosinger, J. L., and Cohen, A. I. (1989b). Comparison of adenosine uptake and endogenous adenosine-containing cells in mammalian retina.Vis. Neurosci. 2109–116.

    Google Scholar 

  • Braas, K. M., Newby, A. C., Wilson, V. S., and Snyder, S. H. (1986). Adenosine-containing neurons in the brain localized by immunocytochemistry.J. Neurosci. 61952–1961.

    Google Scholar 

  • Braas, K. M., Zarbin, M. A., and Snyder, S. H. (1987). Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina.Proc. Natl. Acad. Sci. USA 843906–3910.

    Google Scholar 

  • Campochiaro, P., Ferkany, J. W., and Coyle, J. T. (1985). Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retinain vitro.Vis. Res. 251375–1386.

    Google Scholar 

  • Cooper, D. M. F., Young, S. M. H., Perez-Reyes, E., Owens, J. R., Fossom, L. H., and Gill, D. L. (1985). Properties required of a functional Ni, the GTP regulatory complex that mediates the inhibitory actions of neurotransmitters on adenylate cyclase.Adv. Cyclic Nucleotide Prot. Phos. Res. 975–86.

    Google Scholar 

  • Dawis, S., and Niemeyer, G. (1987). Theophylline abolishes the light peak in perfused cat eyes.Invest. Ophthalmol. Vis. Sci. 28700–706.

    Google Scholar 

  • Deckert, J., Bisserbe, J.-C., Klein, E., and Marangos, P. J. (1988). Adenosine uptake sites in brain: Regional distribution of putative subtypes in relationship to adenosine A1 receptors.J. Neurosci. 82238–2249.

    Google Scholar 

  • de Mello, M. C. F., Ventura, A. L. M., Paes de Carvelho, R., Klein, W. L., and de Mello, F. G. (1982). Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture.Proc. Natl. Acad. Sci. USA 795708–5712.

    Google Scholar 

  • Donner, K., and Hemila, S. (1985). Rhodopsin phosphorylation inhibited by adenosine in frog rods: Lack of effects on excitation.Comp. Biochem. Physiol. 81A431–439.

    Google Scholar 

  • Dragunow, M., and Faull, R. L. M. (1988). Neuroprotective effects of adenosine.Trends Pharmacol. Sci. 9193–194.

    Google Scholar 

  • Dunwiddie, T. V. (1985). The physiological role of adenosine in the central nervous system. InInternational Review of Neurobiology (J. R. Symthies, and R. J. Bradley, Eds.), Academic Press, New York, pp. 63–139.

    Google Scholar 

  • Dunwiddie, T. V., and Fredholm, B. B. (1984). Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation.Naunyn-Schmiedeberg Arch. Pharmacol. 326294–301.

    Google Scholar 

  • Dunwiddie, T. V., Hoffer, B. J. and Fredholm, B. B. (1981). Alkylxanthines elevate hippocampal excitability. Evidence for a role of endogenous adenosine.Naunyn-Schmiedeberg Arch. Pharmacol. 316326–330.

    Google Scholar 

  • Ehinger, B., and Dowling, J. (1987). Retinal neurocircuitry and transmission. InHandbook of Chemical Neuroanatomy, Vol. 5. Integrated Systems of the CNS Part I (A. Bjorklund, T. Hokfelt, and L. W. Swanson, Eds.), Elsevier, Amsterdam, pp. 389–446.

    Google Scholar 

  • Ehinger, B., and Perez, M. T. R. (1984). Autoradiography of nucleoside uptake into the retina.Neurochem. Int. 6369–381.

    Google Scholar 

  • Fastbom, J., Pazos, A., and Palacios, J. M. (1987a). The distribution of adenosine A1 receptors and 5′-nucleotidase in the rat brain of some commonly used experimental animals.Neuroscience 22813–826.

    Google Scholar 

  • Fastbom, J., Pazos, A., Probst, A., and Palacios, J. M. (1987b). Adenosine A1 receptors in the human brain: A quantitative autoradiographic study.Neuroscience 22827–839.

    Google Scholar 

  • Friedman, Z., Hackett, S. F., Linden, J. and Campochiaro, P. A. (1989). Human retinal pigment epithelial cells in culture possess A2-adenosine receptors.Brain Res. 49229–35.

    Google Scholar 

  • Geiger, J. D. (1986). Localization of [3H]cyclohexyladenosine and [3H]nitrobenzylthioinosine binding sites in rat striatum and superior colliculus.Brain Res. 363404–408.

    Google Scholar 

  • Geiger, J. D., and Nagy, J. I. (1984). Heterogeneous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: An autoradiographic and membrane binding study.Brain Res. Bull. 13657–666.

    Google Scholar 

  • Geiger, J. D., Johnston, M. E., and Yago, V. (1988). Pharmacological characterization of rapidly accumulated adenosine by dissociated brain cells from adult rat.J. Neurochem. 51283–291.

    Google Scholar 

  • Goodman, R. R., Cooper, M. J., Gavish, M., and Snyder, S. H. (1982). Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine A1-receptors in brain membranes.Mol. Pharmacol. 21329–335.

    Google Scholar 

  • Goodmam, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H. (1983). Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons.Science 220967–969.

    Google Scholar 

  • Henderson, J. F. (1979). Regulation of adenosine metabolism. InPhysiological and Regulatory Functions of Adenosine and Adenine Nucleotides (H. P. Baer, and G. I. Drummond, Eds.), Raven Press, New York, pp. 315–322.

    Google Scholar 

  • Hollins, C., and Stone, T. W. (1980). Characteristics of the release of adenosine from slices of rat cerebral cortex.J. Physiol. 30373–82.

    Google Scholar 

  • Jarvis, S. M. (1988). Adenosine transporters. InReceptor Biochemistry and Methodology: Adenosine Receptors (D. M. F. Cooper, and C. Londos, Eds.), Alan R. Liss, New York, pp. 113–123.

    Google Scholar 

  • Jarvis, M. F., Jackson, R. H., and Williams, M. (1989). Autoradiographic characterization of high-affinity adenosine A2 receptors in the rat brain.Brain Res. 484111–118.

    Google Scholar 

  • Jonzon, B., and Fredholm, B. B. (1985). Release of purines, noradrenaline and GABA from rat hippocampal slices by field stimulation.J. Neurochem. 44217–224.

    Google Scholar 

  • Kreutzberg, G. W., and Hussain, S. T. (1984). Cytochemical localization of 5′-nucleotidase activity in retinal photoreceptor cells.Neuroscience 11 857–866.

    Google Scholar 

  • Kreutzberg, G. W., Barron, K. D., and Schubert, P. (1978). Cytochemical localization of 5′-nucleotidase in glial plasma membranes.Brain Res. 158247–257.

    Google Scholar 

  • LeHir, M., and Dubach, U. C. (1984). Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles.Pflugers Arch. 40158–63.

    Google Scholar 

  • LeHir, M., and Dubach, U. C. (1985a). Uphill transport of pyrimidine nucleotides in renal brush border vesicles.Pflugers Arch. 404238–243.

    Google Scholar 

  • LeHir, M., and Dubach, U. C. (1985b). Concentrative transport of purine nucleosides in brush border vesicles of the rat kidney.Eur. J. Clin. Invest. 15121–127.

    Google Scholar 

  • Lohse, M. J., Lenschow, V., and Schwabe, U. (1984). Two affinity states of Ri adenosine receptors in brain membranes.Mol. Pharmacol. 261–9.

    Google Scholar 

  • Londos, C., Wolff, J., and Cooper, D. M. F. (1981). Adenosine as a regulator of adenylate cyclase. InPurine Receptors, Receptors and Recognition, Series B, Vol. 12 (G. Burnstock, Ed.), Chapman and Hall, London, pp. 289–323.

    Google Scholar 

  • MacDonald, W. F., and White, T. D. (1985). Nature of extrasynaptosomal accumulation of endogenous adenosine evoked by K+ and verayridine.J. Neurochem. 45791–797.

    Google Scholar 

  • Magistretti, P. J., Hof, P. R., and Martin, J.-L. (1986). Adenosine stimulates glycogenolysis in mouse cerebral cortex: A possible coupling mechanism between neuronal activity and energy metabolism.J. Neurosci. 62558–2562.

    Google Scholar 

  • Masland, R. H., Mills, J. W., and Hayden, S. A. (1984). Acetylcholine-synthesizing amacrine cells: Identification and selective staining by using radioautography and fluorescent markers.Proc. R. Soc. Lond. 22379–100.

    Google Scholar 

  • Massey, S. C., and Redburn, D. A. (1987). Transmitter circuits in the vertebrate retina.Prog. Neurobiol. 2855–96.

    Google Scholar 

  • Michaelis, M. L., Johe, K. K., Moghadam, B., and Adams, R. N. (1988). Studies on the ionic mechanism for the neuromodulatory actions of adenosine in the brain.Brain Res. 473249–260.

    Google Scholar 

  • Motley, S. J., and Collins, G. G. S. (1983). Endogenous adenosine inhibits excitatory transmission in the rat olfactory cortex slice.Neuropharmacology 221081–1086.

    Google Scholar 

  • Nagy, J. I., LaBella, L. A., Buss, M., and Daddona, P. E. (1984). Immunohistochemistry of adenosine deaminase: Implications for adenosine neurotransmission.Science 224166–168.

    Google Scholar 

  • Nagy, J. I., Geiger, J. D., and Daddona, P. E. (1985). Adenosine uptake sites in rat brain: Identification using [3H]nitrobenzylthioinosine and colocalization with adenosine deaminase.Neurosci. Lett. 5547–53.

    Google Scholar 

  • Newby, A. C., and Sala, G. B. (1982). A new procedure for haptenizing adenosing leading to a more specific radioimmunoassay method.Biochem. J. 208603–610.

    Google Scholar 

  • Niemeyer, G., and Früh, B. (1989). Adenosine and cyclohexyladenosine inhibit the cat's optic nerve action potential.Experientia 45:A18 (abstr.).

  • Osborne, N. N. (1989). [3H]Glycogen hydrolysis elicited by adenosine in rabbit retina: Involvement of A2-receptors.Neurochem. Int. 14419–422.

    Google Scholar 

  • Paes de Carvalho, R. (1990). Development of A1 adenosine receptors in the chick embryo retina.J. Neurosci. Res. 25236–242.

    Google Scholar 

  • Paes de Carvalho, R., and de Mello, F. G. (1982). Adenosine-elicited accumulation of adenosine 3′,5′-cyclic monophosphate in the chick embryo retina.J. Neurochem. 38493–500.

    Google Scholar 

  • Paes de Carvalho, R., and de Mello, F. G. (1985). Expression of A1 adenosine receptors modulating dopamine-dependent cyclic AMP accumulation in the chick embryo retina.J. Neurochem. 44845–851.

    Google Scholar 

  • Paes de Carvalho, R., Braas, K. M., Snyder, S. H., and Adler, R. (1989). Adenosine uptake and release in purified cultures of chick retinal neurons and photoreceptors.J. Neurochem. 52s157-s157 (abstr.).

    Google Scholar 

  • Paes de Carvalho, R., Braas, K. M., Snyder, S. H., and Adler, R. (1990). Analysis of adenosine immunoreactivity, uptake and release in purified cultures of developing chick embryo retinal neurons and photoreceptors.J. Neurochem. 551603–1611.

    Google Scholar 

  • Palczewski, K., McDowell, J. H., and Hargrave, P. H. (1988). Purification and characterization of rhodopsin kinase.J. Biol. Chem. 26314067–14073.

    Google Scholar 

  • Perez, M. T. R., and Bruun, A. (1987). Colocalization of [3H]-adenosine accumulation and GABA immunoreactivity in the chicken and rabbit retinas.Histochemistry 87413–417.

    Google Scholar 

  • Perez, M. T. R., and Ehinger, B. (1986). Adenosine uptake and release in the rabbit retina. InRetinal Signal Systems, Degenerations and Transplants (E. Agardh, and B. Ehinger, Eds.), Elsevier Science, Amsterdam, pp. 163–172.

    Google Scholar 

  • Perez, M. T. R., and Ehinger, B. (1989a). Multiple neurotransmitter systems influence the release of adenosine derivatives from the rabbit retina.Neurochem. Int. 15411–420.

    Google Scholar 

  • Perez, M. T. R., and Ehinger, B. (1989b). Adenosine inhibits evoked acetylcholine release from the rabbit retina.J. Neurochem. 52:S157 (abstr.).

    Google Scholar 

  • Perez, M. T. R., Ehinger, B. E., Linstrom, K., and Fredholm, B. B. (1986). Release of endogenous and radioactive purines from the rabbit retina.Brain Res. 398106–112.

    Google Scholar 

  • Perez, M. T. R., Arner, K., and Ehinger, B. (1988). Stimulation-evoked release of purines from the rabbit retina.Neurochem. Int. 13307–318.

    Google Scholar 

  • Phillis, J. W., and Wu, P. H. (1981). The role of adenosine and its nucleotides in central synaptic transmission.Prog. Neurobiol. 16187–239.

    Google Scholar 

  • Schorderet, M. (1989). Receptors coupled to adenylate cyclase in isolated rabbit retina.Neurochem. Int. 14387–395.

    Google Scholar 

  • Schubert, P. (1988). Physiological modulation by adenosine: selective blockade of A1 receptors with DPCPX enhances stimulus train-evoked neuronal Ca influx in rat hippocampal slices.Brain Res. 458162–165.

    Google Scholar 

  • Scott, T. G. (1967). The distribution of 5′-nucleotidase in the brain of the mouse.J. Comp. Neurol. 12997–113.

    Google Scholar 

  • Senba, E., Daddona, P. E., and Nagy, J. I. (1986). Immunohistochemical localization of adenosine deaminase in the retina of the rat.Brain Res. Bull. 17209–217.

    Google Scholar 

  • Tapia, P., and Arias, C. (1982). Selective stimulation of neurotransmitter release from chick retina by kainic acid and glutamic acid.J. Neurochem. 391169–1178.

    Google Scholar 

  • Tauchi, M., and Masland, R. H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina.Proc. R. Soc. Lond. 223101–119.

    Google Scholar 

  • van Calker, D., Muller, M., and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells.J. Neurochem. 33999–1005.

    Google Scholar 

  • Watt, C. B., Su, Y. Y. T., and Lam, D. M. K. (1985). Enkaphalins in the vertebrate retina. InProgress in Retinal Research, Vol. 4 (N. N. Osborne, and G. J. Chader, Eds.), Pergamon Press, Oxford, pp. 221–242.

    Google Scholar 

  • Williams, M. (1987). Purine receptors in mammalian tissues: Pharmacology and functional significance.Annu. Rev. Pharmacol. Toxicol. 27315–345.

    Google Scholar 

  • Woods, C., and Bazynski, C. (1991). Characterization of adenosine A1 receptor binding sites in bovine retinal membranes.Exp. Eye Res. (in press).

  • Wu, P. H., and Phillis, J. W. (1984). Uptake by central nervous tissues as a mechanism for the regulation of extracellular adenosine concentrations.Neurochem. Int. 6613–632.

    Google Scholar 

  • Wu, P. H., Moron, M., and Barraco, R. (1984). Organic calcium channel blockers enhance [3H]purine release from rat brain cortical synaptosomes.Neurochem. Res. 91019–1031.

    Google Scholar 

  • Yeung, S. M., and Green, R. D. (1983). Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidodiphosphate or N-ethylmaleimide.J. Biol. Chem. 2582334–2339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazynski, C., Perez, MT.R. Adenosine in vertebrate retina: Localization, receptor characterization, and function. Cell Mol Neurobiol 11, 463–484 (1991). https://doi.org/10.1007/BF00734810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734810

Key words

Navigation