Skip to main content
Log in

Sulfated proteoglycans synthesized by Neuro 2a neuroblastoma cells: Comparison between cells with and without ganglioside-induced neurites

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mouse neuroblastoma Neuro 2a cells are known to extend neurite-like processes in response to gangliosides added to the culture medium. We compared the structural features of proteoglycans (PG) synthesized by conventional Neuro 2a cells with those of neurite-bearing cells. Two different proteoglycans labeled with [35S]sulfate, namely, chondroitin sulfate proteoglycan (CS-PG) and heparan sulfate proteoglycan (HS-PG), were found both in the cell layer and in the culture medium of the conventional cells. CS-PG isolated from the cell layer had a Kav value of 0.38 on Sepharose CL-6B, and had CS side chains with Mr of 27,000. HS-PG in the cell layer was slightly larger (Kav of 0.33) in terms of hydrodynamic size than CS-PG, and the apparent Mr of the heparan sulfate side chains was 10,000. The structural parameters of CS-PG and HS-PG isolated from the medium were almost identical to those of the PGs in the cell layer. In addition to these PGs, single-chain HS, with an average Mr of 2,500, was observed only in the cell layer and this component was the major sulfated component in the cell layers of both control and ganglioside treated cells. The neurite-bearing cells also synthesized both CS-PG and HS-PG which were very similar in hydrodynamic size to those synthesized by the conventional cells, but the size of HS side chains was greater. Radioactivity, as35S, of each sulfated component from the gangliosideteated culture seemed to be slightly less than that of the corresponding component from the control culture. These findings indicate that the marked morphological change in Neuro 2a cells, induced by gangliosides is not accompanied by major changes in the synthesis of PGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kimhi, Y. 1981. Nerve cells in clonal systems. Pages 173–245,in Nelson, P. G., and Lieberman, M. (eds.), Excitable Cells in Tissue Culture, Plenum Press, New York.

    Google Scholar 

  2. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., and Tettamanti, G. 1984. Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J. Neurochem. 42:299–305.

    PubMed  Google Scholar 

  3. Roisen, F. J., Bartfeld, H., Negele, R., and Yorke, G. 1981. Ganglioside stimulation of axonal sprouting in vitro. Science 214:577–578.

    PubMed  Google Scholar 

  4. Leon, A., Facci, L., Benvegnù, D., and Toffano, G. 1982. Morphological and biochemical effects of gangliosides in neuroblastoma cells. Dev. Neurosci. 5:108–114.

    PubMed  Google Scholar 

  5. Chalazonitis, A., and Greene, L. A. 1974. Enhancement in excitability properties of mouse neuroblastoma cell cultures in the presence of dibutyryl cyclic AMP. Brain Res. 74:340–345.

    Google Scholar 

  6. Höök, M., Kjellén, L., Johansson, S., and Robinson, J. 1984. Cell-surface glycosaminoglycans. Ann. Rev. Biochem. 53:847–869.

    PubMed  Google Scholar 

  7. Gallagher, J. T., Lyon, M., and Steward, W. P. 1986. Structure and function of heparan sulfate proteoglycans. Biochem. J. 236:313–325.

    PubMed  Google Scholar 

  8. Hampson, I. N., Kumar, S., and Gallagher, J. T. 1984. Heterogeneity of cell-associated and secretory heparan sulfate proteoglycans produced by cultured human neuroblastoma cells. Biochim. Biophys. Acta 801:306–313.

    PubMed  Google Scholar 

  9. Maresh, G. A., Chernoff, E. A. G., and Culp, L. A. 1984. Heparan sulfate proteoglycans of human neuroblastoma cells:affinity fractionation on columns of platelet factor-4. Arch. Biochem. Biophys. 233:428–437.

    PubMed  Google Scholar 

  10. Margolis, R. K., Salton, S. R. J., and Margolis, R. U. 1987. Effects of nerve growth factor-induced differentiation on the heparan sulfate of PC12 pheochromocytoma cells and comparison with developing brain. Arch. Biochem. Biophys. 257:107–114.

    PubMed  Google Scholar 

  11. Katoh-Semba, R., Oohira, A., Sano, M., Watanabe, K., Kitajima, S., and Kashiwamata, S. 1989. Glycosaminoglycan composition of PC12 pheochromocytoma cells: a comparison with PC12D cells, a new subline of PC12 cells. J. Neurochem. 52:889–895.

    PubMed  Google Scholar 

  12. Perris, R., and Johansson, S. 1987. Amphibian neural crest cell migration on purified extracellular matrix components: a chondroitin sulfate proteoglycan inhibits locomotion on fibronectin substrates. J. Cell Biol. 105:2511–2521.

    PubMed  Google Scholar 

  13. Cole, G. J., and Glaser, L. 1986. A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J. Cell Biol. 102:403–412.

    PubMed  Google Scholar 

  14. Hoffman, S., and Edelman, G. M. 1987. A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc. Natl. Acad. Sci. USA. 84:2523–2527.

    PubMed  Google Scholar 

  15. Roisen, F. J., Bartfeld, H., and Rapport, M. M. 1981. Ganglioside mediation of in vitro neuronal maturation. Pages 135–150,in Rapport, M. M., and Gorio, A. (eds.), Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Raven Press, New York.

    Google Scholar 

  16. Oohira, A., Wight, T. N., McPherson, J., and Bornstein, P. 1982. Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-2, a basement membrane-producing cell line. J. Cell Biol. 92:357–367.

    PubMed  Google Scholar 

  17. Oike, Y., Kimata, K., Shinomura, T., Nakazawa, K., and Suzuki, S. 1980. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-β-D-galactosidase (keratanase). Biochem. J. 191:193–207.

    PubMed  Google Scholar 

  18. Kato, M., Oike, Y., Suzuki, S., and Kimata, K. 1985. Selective removal of heparan sulfate chains from proteoheparan sulfate with a commercial preparation of heparitinase. Anal. Biochem. 148:479–484.

    PubMed  Google Scholar 

  19. Watanabe, K., Oohira, A., Uramoto, I., and Totsuka, T. 1986. Age-related changes in the content and composition of glycosaminoglycans isolated from the mouse skeletal muscle: normal and dystrophic conditions. J. Biochem. 100:167–173.

    PubMed  Google Scholar 

  20. Saito, H., Yamagata, T., and Suzuki, S. 1968. Enzymatic methods for the determination of small quantities of isometric chondroitin sulfates. J. Biol. Chem. 243:1536–1542.

    PubMed  Google Scholar 

  21. Lindahl, U., Bäckström, G., Jansson, L., and Hallén, A. 1973. Biosynthesis of heparin: II. Formation of sulfamino groups. J. Biol. Chem. 248:7234–7241.

    Google Scholar 

  22. Wasteson, Å. 1971. A method for the determination of the molecular weight and molecular weight distribution of chondroitin sulfate. J. Chromatogr. 59:87–97.

    PubMed  Google Scholar 

  23. Oohira, A., Matsui, F., Oki, T., and Nogami, H. 1987. Deficiency of density-dependent regulation of cell growth in the culture of skin fibroblasts from patients with mucolipidosis III. J. Cell Sci. 87:249–257.

    PubMed  Google Scholar 

  24. Dimpfel, W., Moller, W., and Mengs, U. 1981. Ganglioside-induced neurite formation in cultured neuroblastoma cells. Pages 119–133,in Rapport, M. M., and Gorio, A. (eds.), Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Raven Press, New York.

    Google Scholar 

  25. Oohira, A., Wight, T. N., and Bornstein, P. 1983. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J. Biol. Chem. 258:2014–2021.

    PubMed  Google Scholar 

  26. Nelson, P., Ruffner, W., and Niremberg, M. 1969. Neuronal tumor cells with excitable membranes grown in vitro. Proc. Natl. Acad. Sci. USA. 64:1004–1010.

    PubMed  Google Scholar 

  27. Harris, A. J., and Dennis, M. J. 1970. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells. Science 167:1253–1255.

    PubMed  Google Scholar 

  28. Augusti-Tocco, G., Casola, L., and Grasso, A. 1973. Neuroblastoma cells and 14-3-2, a brain protein. Cell Differ. 2:157–162.

    PubMed  Google Scholar 

  29. McMorris, F. A., Kolber, A. R., Moore, B. W., and Perumal, A. S. 1974. Expression of the neuron-specific protein, 14-3-2, and steroid sulfatase in neuroblastoma cell hybrids. J. Cell Physiol. 84:473–480.

    PubMed  Google Scholar 

  30. Augusti-Tocco, G., and Sato, G. 1969. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. USA. 64:311–315.

    PubMed  Google Scholar 

  31. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M. 1969. In vitro differentiation of mouse neuroblastoma. Proc. Natl. Acad. Sci. USA. 64:316–323.

    PubMed  Google Scholar 

  32. Dennis-Donini, S., and Augusti-Tocco, G. 1980. Molecular and lectin probe analysis of neuronal differentiation. Pages 323–348,in Moscona, A. A., and Monroy, A. (eds.), Current Topics in Developmental Biology, Vol. 16, Neural development, Part II, Academic Press, New York.

    Google Scholar 

  33. Marchisio, P. C., Osborn, M., and Weber, K. 1978. Changes in intracellular organization of tubulin and actin in N-18 neuroblastoma cells during the process of axon extension induced by serum deprivation. Brain Res. 155:229–237.

    PubMed  Google Scholar 

  34. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA. 73:2424–2428.

    PubMed  Google Scholar 

  35. Oohira, A., Matsui, F., Matsuda, M., Takida, H., and Kuboki, Y. 1988. Occurrence of three distinct molecular species of chondroitin sulfate proteoglycan in the developing rat brain. J. Biol. Chem. 263:10240–10246.

    PubMed  Google Scholar 

  36. Norling, B., Glimelius, B., Westermark, B., and Wasteson, Å. 1978. A chondroitin sulfate proteoglycan from human cultured glial cells aggregates with hyaluronic acid. Biochem. Biophys. Res. Commun. 84:914–921.

    PubMed  Google Scholar 

  37. Gallo, V., Bertolotto, A., and Levi, G. 1987. The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors. Dev. Biol. 123:282–285.

    PubMed  Google Scholar 

  38. Oohira, A., Matsui, F., Matsuda, M., and Shoji, R. 1986. Developmental change in the glycosaminoglycan composition of the rat brain. J. Neurochem. 47:588–593.

    PubMed  Google Scholar 

  39. Oohira, A., Matsuda, M., Matsui, F., Shoji, R., and Watanabe, K. 1986. Structure and functions of cell surface glycoconjugates in brain morphogenesis. Cong. Anom. 26:197–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Oohira, A., Katoh-Semba, R. et al. Sulfated proteoglycans synthesized by Neuro 2a neuroblastoma cells: Comparison between cells with and without ganglioside-induced neurites. Neurochem Res 14, 707–716 (1989). https://doi.org/10.1007/BF00964947

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964947

Key Words

Navigation